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A Spatio-Temporal Multi-Scale Binary Descriptor
Alessio Xompero, Oswald Lanz, Andrea Cavallaro

Abstract—Binary descriptors are widely used for multi-view
matching and robotic navigation. However, their matching perfor-
mance decreases considerably under severe scale and viewpoint
changes in non-planar scenes. To overcome this problem, we
propose to encode the varying appearance of selected 3D scene
points tracked by a moving camera with compact spatio-temporal
descriptors. To this end, we first track interest points and
capture their temporal variations at multiple scales. Then, we
validate feature tracks through 3D reconstruction and compress
the temporal sequence of descriptors by encoding the most
frequent and stable binary values. Finally, we determine multi-
scale correspondences across views with a matching strategy that
handles severe scale differences. The proposed spatio-temporal
multi-scale approach is generic and can be used with a variety of
binary descriptors. We show the effectiveness of the joint multi-
scale extraction and temporal reduction through comparisons of
different temporal reduction strategies and the application to
several binary descriptors.

Index Terms—Binary descriptor, Spatio-temporal feature,
Multi-scale

I. INTRODUCTION

LOCAL image features [1] are important for object
recognition [2], retrieval [3], [4], Structure-from-Motion

(SfM) [5], 3D reconstruction [6], visual Simultaneous Locali-
sation and Mapping (SLAM) [7], and Collaborative SLAM [8].
To facilitate matching across views, these features describe the
neighbourhood (or patch) of an interest point with a distinctive
signature, which is designed to be invariant to scale, viewpoint
and illumination changes, blur and compression artefacts [9].

Scale Invariant Feature Transform (SIFT) [2] and its vari-
ants [10]–[13] describe statistics of the patch and cope with
challenging geometric variations. However, the extraction and
matching of SIFT-like features, which accumulate gradient
orientation information, are generally slow for real-time ap-
plications or resource-constrained devices. Efficient extraction
and matching are instead obtained with binary signatures
generated, for example, with a set of predefined comparisons
(or binary tests) within the patch [14]–[17]. These binary
features can be encoded ten times faster than SIFT-like de-
scriptors and their representation is typically stored with only
32 bytes, whereas SIFT uses 128 bytes [13], [14], [18]. This
gain in efficiency comes at the cost of a reduced robustness
to geometric changes. For example, the accuracy of the
widely used Oriented FAST and Rotated BRIEF (ORB) [15]
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features on the matching task of the HPatches dataset with
viewpoint and illumination changes is 15.32%, whereas SIFT
achieves 25.47%, on average [1].

To improve descriptiveness and robustness, local features
can benefit from temporally accumulated information [19],
[20]. Spatio-temporal features can be extracted within a (fixed)
temporal window [19] or by tracking local image features [7],
[20]. Cuboid [21], HOG/HOF [22], HOG3D [23], Extended
SURF (eSURF) [24], and 3D-SIFT [25] are extracted in a
fixed volume around an interest point localised in scale, space
and time [19]. As the local temporal structure depends on
the camera view, these features are mainly designed for in-
camera tasks and are unsuitable for matching across cameras
with considerable view changes [20]. Daisy-3D [20] ORB-
SLAM [7], and STB [26] use tracking instead. Daisy-3D [20],
which is obtained by tracking with optical flow priors and con-
catenating dense 2D Daisy features [27], is computationally
expensive to track and match. ORB-SLAM [7] tracks ORB
features and selects the ORB descriptor from the sequence
of descriptors with the least median Hamming distance from
all the other ORB descriptors. ORB-SLAM uses Bag of
(Binary) Words [4] to match instances of ORB descriptors
without exploiting information from the spatio-temporal fea-
ture. STB [26] encodes as binary representation the trajectory
information as well as the horizontal and vertical components
of the temporal gradient of a local spatio-temporal volume.
Dense viewpoint- and illumination-invariant descriptors from
models obtained with dense SLAM systems can be learned
from RGB-D data [28] for indoor or well-structured scenes.
However, the underlying SLAM system may fail outdoors due
to inaccurate or incomplete depth information. Therefore, an
important open problem for cross-camera matching is how to
design a binary descriptor that is robust to severe changes in
viewpoint and scale, while preserving efficiency.

In this paper, we propose a novel spatio-temporal binary
descriptor that captures appearance variations of a 3D scene
point as observed by a moving camera. This compact descrip-
tor selectively encodes the temporal information associated
with the 3D point to improve robustness to view differences.
In particular, we propose a temporal reduction approach to
encode the most frequent and stable binary values, so that
the descriptor identifies temporally dominant values and the
most stable tests over time. Moreover, to handle scale varia-
tions, the proposed descriptor relies on a multi-scale feature
extraction and representation associated with a cross-scale
matching strategy. Unlike [17], we augment the feature point
detector with a feature suppression approach that increases
scale invariance and leads to a more desirable spatially uniform
feature distribution. Moreover, unlike [29], we use a pyramidal
local search for feature point tracking [30] to increase the
lifespan of feature tracks and to better capture appearance
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variations of the 3D point. The proposed descriptor is generic
and we validate it with a range of binary descriptors. Moreover,
we show that, on scenarios with challenging scale and view-
point changes, the proposed approach outperforms alternative
temporal reductions and the cross-camera matching based on
Bag of (Binary) Words used in Collaborative SLAM [8].

II. BACKGROUND

Local image features may be generated with Convolutional
Neural Networks (CNN) operating on patches or on the whole
frame; histogram representations of gradients or intensities of
local patches; or binary descriptors. Binary descriptors result
from hash or projection functions followed by thresholding, or
from tests on pre-defined sampling patterns that are learnt [15],
[18], [31], [32], defined deterministically [16] or probabilisti-
cally [14].

Patch-based CNN features learn to discriminate correct and
incorrect matches with supervised training. Examples include
DeepDesc [33], DeepCompare [34], TFeat [35], and Multi-
resolution CNN (MR-CNN) [36]. DeepDesc [33] and Deep-
Compare [34] train a Siamese network with pairs of annotated
patches to push away incorrect patches and to move corre-
sponding patches closer on a Euclidean, Hamming, or learnt
metric. To reduce overfitting, TFeat [35] extends this network
to triplets (anchor, positive sample, negative sample) and
uses hard negative mining by swapping anchor and positive
samples. To improve scale invariance, MR-CNN [36] learns
a descriptor using image patches scaled at three resolutions
as input to a three-stream Siamese network. However, TFeat
outperforms MR-CNN in patch and image matching as well
as in efficiency.

Image-based CNN features learn to localise and describe
interest points on the whole image. Examples include Fully
Convolutional Recursive Network - Patch Descriptor Net-
work (FCRN-PDN) [37], Learned Invariant Feature Trans-
form (LIFT) [38], Local Feature Network (LF-Net) [39],
and Superpoint [40]. FCRN-PDN [37] learns to detect scale-
invariant keypoints using a multi-scale branching mechanism
within a fully convolutional recursive network. To assign a
descriptor to the extracted patches, a second CNN is used
that, similarly to TFeat, is trained with a triplet loss. Each
network is trained independently in a self-supervised manner
with data collected through SfM with aerial images at different
scales. LIFT [38] uses an end-to-end network to learn detector,
orientation estimator and descriptor in cascade starting from
the descriptor stage. For learning the descriptor, LIFT extends
TFeat to quadruplets, including an image patch with non
distinctive information. The training is based on SIFT features
and therefore LIFT has the limitations of SIFT. Instead of
relying on supervised labelled data, LF-Net [39] uses ground
truth camera poses and depth images to improve the learning
of the end-to-end feature extraction pipeline. Superpoint [40]
is a self-supervised approach that estimates interest point loca-
tions and associated descriptors directly on raw input images,
assuming as model a homography. However, the training on
synthetic images or real images with affine transformations
does not guarantee its applicability to wide-baseline matching.

Histogram-based features include SIFT [2] and its vari-
ants [9], [10], [13], [41], [42], Speeded Up Robust Fea-
tures (SURF) [43], Daisy [27], Local Intensity Order Pattern
(LIOP) [44], Overall Intensity Order Pattern (OIOP) [45]
and Mixed Intensity Order Pattern (MIOP) [45]. SURF [43]
approximates the gradient with responses of Haar wavelets.
Daisy [27] estimates convolutional oriented maps for each
pixel with Gaussian filters and has a similar invariance to SIFT
but a better efficiency for dense matching. Local Intensity
Order Pattern (LIOP) [44], Overall Intensity Order Pattern
(OIOP) [45] and Mixed Intensity Order Pattern (MIOP) [45]
rank pixels in a patch according to their intensity value which
is assigned to an intensity bin (ordinal cluster). LIOP [44]
encodes the local ordinal information of each pixel by mapping
the quantised intensities of corresponding neighbouring sam-
pling points to a decimal code via a look-up table. OIOP [45]
instead encodes the overall ordinal information by linearly
combining the quantised values. The normalised histogram of
the LIOP and OIOP codes are then computed for each ordinal
cluster and concatenated to form the descriptor. MIOP [45]
exploit the complementary information between the two de-
scriptors at a reduced dimensionality (128 vs. 144/256 bytes)
by applying PCA to the concatenation of LIOP and OIOP.
LIOP, OIOP and MIOP outperform SIFT and Daisy [45].

Binary features are generated from comparisons of in-
tensity values of pixels pairs, e.g. Binary Robust Invariant
Elementary Features (BRIEF) [14], Oriented FAST and Ro-
tated BRIEF (ORB) [15], Binary Robust Invariant Scale Key-
point (BRISK) [16], or Fast REtinA Keypoint (FREAK) [31].
Distinctiveness can be increased by extending comparisons
to statistics of small windows pairs [32] or triplets [18].
ORB and FREAK learn the sampling pattern with a variance-
correlation bit selection strategy. Local Difference Binary
(LDB) [32] minimises the distance between pre-annotated
matching interest points, whereas Learned Arrangements of
Three patCH codes (LATCH) [18] maximises the distance of
non-matching interest points. However, the efficiency gained
with the pixel pair intensity comparisons comes at the cost
of a reduced accuracy and robustness to geometric transfor-
mations and photometric variations, for example due to the
changes in the binary values (instability) [51]. Binary Online
Learned Descriptor (BOLD) [51] addresses this problem by
selecting the most discriminative tests, e.g. after quantifying
their stability to small geometric variations (e.g. scale or affine)
in BRIEF [14]. The stability flag for each binary test is
encoded as an additional binary vector. Other approaches use
hash or projection functions and they threshold the resulting
vector to obtain the final binary descriptor [48]–[50], [54].
LDA-Hash [54] applies discriminative hash functions to SIFT
descriptors followed by thresholding to obtain the binary
representation. D-BRIEF [48] projects the patch intensities to
a compact binary representation using a linear combination
of box or Gaussian filters. Binboost [49] learns a set of hash
functions that are the binary response of a boosting strong
classifier built as a linear combination of weak classifiers. Re-
ceptive Field Descriptor (RFD) [50] learns a binary descriptor
by first selecting the set of most discriminative receptive fields,
defined as the aggregation of low-level filter responses within a
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TABLE I
LOCAL IMAGE AND SPATIO-TEMPORAL FEATURES. GRAY CELLS DENOTE PROPERTIES NOT HANDLED BY THE METHOD. KEY – REF: REFERENCE;

ROT: ROTATION; DIST: DISTANCE USED FOR MATCHING DESCRIPTORS; UNS: UNSUPERVISED; MS: MULTI-SCALE; SI: SCALE INVARIANT; V: SPACE-TIME
VOLUME; T: TRACKING; CNN: CONVOLUTIONAL NEURAL NETWORK; CONCAT.: CONCATENATION; L: LEARNT; E: EUCLIDEAN; H: HAMMING;

W: WEIGHTED HAMMING; DOG: DIFFERENCE OF GAUSSIANS; GP: GAUSSIAN PYRAMID; RI: ROTATION INVARIANT; IC: INTENSITY CENTROID; LG: LOCAL
GRADIENT; DD: DATA DEPENDENT; F: FLOATING POINT; B: BINARY. ×: DESCRIPTOR DIMENSION RESULTING FROM A CONCATENATION OPERATION OR A

SET REPRESENTATION.

Detection Description

REF Method Approach Scale Approach ROT Scale Time Dimension Storage DIST UNS
MS SI MS V T

[34] DeepCompare CNN with pairs of labelled patches DD 256 F L
[33] DeepDesc CNN with pairs of labelled patches DD 128 F E
[35] TFeat CNN with triplets of labelled patches DD 128 F E
[36] MR CNN CNN with scaled patches (3 layers) DD X 128 F E
[37] FCRN-PDN L X Scale branches det. + labelled patch triplets DD 128/256 F E
[38] LIFT L X CNN with quadruplets of patches L 128 F E
[39] LF-Net L X CNN with pair of images + depth L 256 F E X
[40] SuperPoint L X CNN with homographic adaptation DD 256 F E X

[2] SIFT DoG X gradient orientations in a regular grid LG 128 F E X
[27] Daisy Dense convolved orientation maps 200 F E X
[44] LIOP local ordinal intensities RI 144 F E X
[45] OIOP overall ordinal intensities RI 256 F E X
[45] MIOP concat. of LIOP with OIOP + PCA RI 128 F E X
[46] SLS DoG X linear subspace of SIFTs LG X 8256 F E X
[11] DSP-SIFT DoG X pooling of SIFTs across scales LG X 128 F E X
[12] ASV DoG X SIFTs/LIOPs stability across scales LG X 128/144 F E X
[25] 3D-SIFT Random 3D gradient orientations LG X 256/2048 F E X
[19] HOG3D STIP [47] X 3D-SIFT with polyhedrons LG X 960 F E X
[20] Daisy-3D Dense X concat. of Daisys with optical flow X 7× 136 F E X

[14] BRIEF random set of pixel pairs 128/256/512 B H X
[15] ORB GP X learnt set of pixel pairs IC 256 B H X
[16] BRISK GP X deterministic set of pixel pairs LG 512 B H X
[32] LDB learnt set of sub-patch pairs IC 256 B H
[18] LATCH learnt set of sub-patch triplets IC 128/256/512 B H
[48] D-BRIEF linear comb. of box/Gaussian filters DD 32 B H
[49] BinBoost learnt set of hash functions (boosting) DD 64 B H
[50] RFD selected receptive fields + learnt thresholds DD 293/598 B H
[51] BOLD online selection of stability bits 512 B W X
[17] MORB GP X set of ORBs across scales IC X 8× 256 B H X
[52] DeepBit CNN with min quantis. + max entropy loss RI 256 B H X
[53] CDBin lightweight CNN with triplet loss RI 256 B H

[7] LMED ORB selection over time IC X 256 B H X
[26] STB optical flow and temporal gradients encoding IC X X 188 B H X
[29] T-DS temporally reduced ORBs (centroid + stability) IC X 512 B W X

MST GP X set of temporally reduced ORBs across scales IC X X 5× 512 B W X

patch, and then binarising the responses with learnt thresholds
for each receptive field. These representations outperform
histogram-based representations, e.g. SIFT, but are less ef-
ficient than early binary features and unsuitable for matching
in time-constrained applications. Finally, DeepBit [52] is a
CNN-based approach that learns a binary descriptor in an
unsupervised manner: an image patch and its geometrically
transformed version are given as input to a Siamese network to
learn a set of projection functions to provide invariance to the
transformations; enforce minimal quantisation error between
the real-value deep feature and the binary code to increase the
descriptiveness (quantisation loss); and evenly distribute the
binary code to maximise the information capacity (entropy)
for each bin (even-distribution loss). CDbin [53], instead, uses
a lightweight CNN to reduce the number of parameters and
increase the efficiency of training and testing, outperforming
other state-of-the-art binary descriptors. In addition to quan-
tisation and even-distribution loss, CDbin uses a supervised
triplet loss to increase the discriminative power and a correla-

tion loss to reduce the correlation among different bits.
Table I summarises the approaches discussed in this sec-

tion. CNN-based descriptors outperform both histogram-based
and binary descriptors on standard patch verification, image
matching, or patch retrieval datasets [1], [9], [55]. However,
histogram-based methods, such as RootSIFT [10], outperform
CNN-based descriptors in generalising across datasets and
applications [5], [6] without requiring any training. There-
fore histogram-based descriptors are still preferable for their
robustness to geometric challenges. The computation time
of extracting and matching both CNN-based and histogram-
based descriptors, however, makes them less suitable for time-
constrained applications, unless GPU accelerations are used
(e.g. GPU-SIFT [56] or TFeat [35]).

III. LOCALISATION AND RECONSTRUCTION

We present a generic framework for binary descriptors that
exploits the movement of a camera to selectively accumulate
and encode temporal information about the appearance of a 3D
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(a) (b)

Fig. 1. Comparison of two feature point suppression approaches. (a) Using
only the cornerness response results in few dense regions; whereas (b) using a
regular grid and the cornerness response leads to a more uniform feature point
distribution that is desirable when matching across very different viewpoints
and scales.

point in a compact representation at multiple scales. To enable
multi-scale extraction, we design a feature suppression strategy
that simultaneously enforces scale-invariance and favours a
spatially uniform distribution during localisation.

A. Grid-Based and Scale-Invariant Feature Point Localisation

Let a local image feature represent the patch around image
location x ∈ R2 with a D-dimensional descriptor d ∈ {0, 1}D.
The number and spatial distribution of interest points over
an image typically depends on a decision on the corner re-
sponse [15], [57]. However, using only the corner response can
result in an undesirable concentration of interest points, thus
reducing opportunities for matches from different viewpoints
and scales (see Fig. 1(a)). Moreover, when interest points are
localised independently for each scale, redundancies can occur
that generate ambiguities in the extracted descriptor [58]. To
retain a maximum number of interest points without tuning the
threshold of the corner response, we propose a suppression
approach that simultaneously considers the corner response
function to select the strongest points across nearby scales over
a Gaussian pyramid (scale-invariance [2], [16]), and a regular
grid to enforce uniformity in the interest point distribution over
the image [7] (see Fig. 1 (b)).

Let Ik be the frame at time k and Ik = {Ik,s}S−1s=0 be its
(scale) pyramid [2], [15], where each layer Ik,s is recursively
down-sampled by a factor λ, up to scale S, with a Gaussian
convolutional kernel, g(·):

Ik,s(λ
−1) = g(λ−1) ∗ Ik,s−1. (1)

To allow the extraction of descriptors at multiple scales, we
divide each Ik,s in a grid of w×w cells considering a scale-
adaptive margin Bs = λS−s−1G from the image borders,
where G×G is the area around an interest point. We localise
interest points with a good trade-off between repeatability and
extraction time [15], [57], [58]. Next, we suppress non-maxima
points across scales by comparing the response with the eight
neighbours at the same scale and with the nine neighbours in
the nearest scales [2], [16].

As the Gaussian pyramid is obtained by following the terms
of a geometric series as coefficients of proportionality based
on the scale factor, λ, we proportionally distribute a number

(a) (b)

Fig. 2. Feature suppression based on quadtree subdivision (suppressed
features are represented with a blue cross). (a) Grid of cells superimposed
on the image. (b) Cells with more than one point are split into four sub-cells
(green blocks for each cell) and features (red dots) are accordingly assigned
to each sub-cell. For each iteration, if the number of cells corresponds to the
desired number of features, the features with higher Harris response [59] are
retained in those cells that contain more than one feature. Cells without points
are not counted for the desired number of features.

of localised interest points across scales, Fs, to determine a
maximum number of features, F , as

Fs =


1−λ−1

1−λ−S+1F if s = 0

λ−1Fs−1 if 0 < s < S − 1

max
(
F −

∑S−2
q=0 Fq, 0

)
if s = S − 1,

(2)

where the resulting coefficients sum to 1.
Therefore we retain only Fs interest points for each scale

s in an iterative way [7]. For each iteration, we sort the cells
based on their feature density in an ascending order (cells
without points are not considered). We then subdivide the cells
that contain more than one interest point into four sub-cells
and interest points are assigned to each sub-cell based on their
location. The iterative procedure ends when the number of
(sub-)cells is equal or greater than Fs or all cells contain only
one interest point. When a cell contains more than one interest
point, we retain only the interest point with the highest corner
response. Fig. 2 illustrates the procedure for the retention of
features based on their spatial distribution.

After localisation, we extract a descriptor for each interest
point and then track the features. As our approach represents
a 3D point associated to the trajectory of a feature, we will
present our multi-scale spatio-temporal descriptor in Sec. IV.
In the next subsection, we focus on how we form a feature
track and reconstruct its 3D point.

B. Temporal Feature Point Reconstruction

Once feature points are localised and described, we estimate
their trajectories over time. We use an iterative coarse-to-
fine, local search by patch correlation through the scales
of the image pyramid [30], [60]. While we observed that
frame-to-frame matching, as used during the initialisation of
ORB-SLAM [7], generates intermittent feature tracks1, the

1Frame-to-frame matching relies on the localisation strategy that selects
different interest points for each frame and the matching is not constrained
to a local area around each interest point in the previous frame.
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Fig. 3. Illustration of the accumulation of binary descriptors of a tracked
feature point x representing a 3D point X.

pyramidal local search allows feature tracks to survive longer.
We reduce the risks of early termination by comparing the
descriptor of the candidate features at the current frame with
a reference descriptor selected adaptively as the one with the
least median distance from all the descriptors in the feature
track. We thus terminate the trajectory if the distance of the
descriptors is larger than a threshold that represents the typical
separation of matching and non-matching feature distributions
in the space of the Hamming distances, e.g. γ = 50 [7],
[14]. As the camera moves, the number of matching features
decreases over time and we detect new interest points every
n frames over a masked version of the frame where all the
pixels around the locations of existing trajectories are set to
zero. Then we initialise a new feature track for all the new
interest points that are successfully tracked in the next frame.

Let us define the feature track as Ti = {xi,ti , . . . ,xi,ki},
whose length is Li = ki − ti + 1, where ti and ki are the
indices of the first and last frame of the trajectory, respectively.
Given the camera calibration information (e.g. obtained with
Zhang’s method [61]), we derive from Ti the position of Xi

by N-view triangulation with Singular Value Decomposition
(SVD) [62]:

Xi = τ(xti,i, . . . ,xki,i,Cti , . . . ,Cki , θ), (3)

where τ(·) is the triangulation function; Cti , . . . ,Cki are the
relative camera poses (i.e. position and orientation, which
we assume to be available through an Inertial Measurement
Unit, Odometry, or Structure-from-Motion); and θ contains the
intrinsic camera parameters, such as focal length and principal
point (and distortion coefficients).

To account for uncertainties in the feature point detection,
feature point tracking and triangulation steps, we validate the
reconstructed 3D point with a maximum re-projection error
of 5 pixels [5], [7] and by constraining the depth to be
positive [7], [62].

Fig. 3 illustrates the process of obtaining the binary spatio-
temporal descriptor from a feature point xi tracked over
consecutive frames (Ti), and representing the corresponding
3D point, Xi.

IV. DESCRIPTION AGGREGATION AND MATCHING

The feature tracking and associated 3D local reconstruction
produce valid spatio-temporal features that we temporally

ORB

MST

(a) Similar (b) Scale difference (c) Viewpoint difference

Fig. 4. Matching performance of MST versus ORB [15] on gate. Green
lines denote correct matches. When scale and viewpoint are similar between
views (a), the performance of ORB are comparable with MST, but matches
are more concentrated in limited areas. When increasing the difference in
scale (b) and viewpoint (c), the performance of ORB considerably decreases,
while MST can handle the geometric variation. ORB features are matched
using the nearest neighbour strategy with the distance ratio test [2], and a
descriptor distance threshold. MST matches are based on the re-projection of
the reconstructed 3D points in the selected frames and those that contains
occluded points on the image are manually removed.

reduce into a fixed-length descriptor considering the most
frequent and stable binary tests. To handle the unknown
scale difference between features, we use a cross-scale match-
ing strategy between multi-scale temporal descriptors with a
weighted Hamming distance to consider the stability informa-
tion.

A. On Handling Scale Variations

Descriptors of multi-scale approaches extracted at the scale
where the interest point is localised [2], [15], [16] can be
inaccurate when matching across images with severe scale
variations [12]. Moreover, redundancies and ambiguities may
arise if interest points are localised independently for each
scale (e.g. ORB [15]), and can be avoided by suppressing non-
maxima across scales [58] (e.g. SIFT [63] or BRISK [16]).
Fig. 4 shows matching results with our approach compared
to ORB features [15] with a similar viewpoint, different scale,
and different viewpoint. Note that the number of ORB matches
can be even lower if an interest point is associated with a
reconstructed 3D point as our approach does.

Descriptors can also be extracted at multiple scales of a
Gaussian pyramid to capture multi-scale information of an
interest point [11], [12], [46]. Coarser levels allow one to dis-
tinguish locally repeated patterns, whereas finer levels capture
subtle changes thus helping to discriminate nearby points [36].
The Scale-less SIFT (SLS) descriptor [46] approximates SIFT
descriptors [2] sampled at multiple scales with a linear sub-
space. Domain-Size Pooling SIFT (DSP-SIFT) [11] aggregates
SIFT descriptors by pooling the values of each bin across
scales. Accumulated Stability Voting (ASV) [12] thresholds
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the absolute difference between SIFT/LIOP descriptors of any
pair of scales and accumulates the relative stability values
into a compact representation. ASV selects one or multiple
thresholds based on the principle of maximum entropy. In a
second stage, ASV uses a further threshold to obtain a binary
representation. These approaches inherit the same limitations
of the histogram-based descriptors and are inadequate under
severe viewpoint changes [17].

We therefore propose an alternative multi-scale and tempo-
ral extraction based on binary descriptors. Unlike our previous
MORB descriptor [17] that applies a cross-scale geometric
verification to remove ambiguities, we reconsider the feature
suppression strategy to add scale-invariance [2] and uniform
distribution of the features over the image [7]. While the
efficiency in the extraction of the descriptor at multiple scales
decreases with the number of scales (a common limitation
for SLS, DSP-SIFT, ASV, MORB, and our descriptor), using
binary descriptors can mitigate this effect.

B. Multi-Scale Temporal (MST) Descriptor

We sample a patch around each point xi of Ti at multiple
scales with a pre-computed pattern S centred at xi,s,k with
s = 1, . . . , S and k ∈ [ti, ki]. To account for the rotation
of the camera with respect to the 3D point, we rotate the
patch towards the dominant orientation by ϕi,s,k with respect
to the centre of mass of the patch as defined by the intensity
centroid [64]. We keep the size of the patch G×G fixed for
each scale s of Ik and define the sampling pattern as:

S = {ub = (ub,1,ub,2)}Db=1, (4)

where ub,1 and ub,2 are pixel locations within the patch. After
sampling using the rotated pattern:

S̃i,s,k = {R(ϕi,s,k)u : u ∈ S,R ∈ SO(2)}, (5)

we generate the descriptor di,s,k ∈ {0, 1}D, whose elements
result from the binary test [14]–[16], [31]:

di,s,k(ub) =

{
1 if I(ub,1) < I(ub,2),

0 otherwise.
(6)

The descriptor di thus represents a set of patch descriptors
at multiple scales and over time:

di = {di,1,ti , . . . ,di,S,ti , . . . ,di,1,ki , . . . ,di,S,ki} . (7)

We propose to represent the interest point with a more
compact and fixed-length descriptor that captures the most
representative tests of each 3D point as seen by a moving
camera (see Fig. 5).

For each scale s, we reduce di,s to a fixed-length vector
zi,s ∈ {0, 1}D by accumulating the binary test values over
time and identifying the dominant binary value as

zi,s,d =

{
1 if 1

Li
〈di,s,d,1〉 > 0.5,

0 otherwise,
(8)

where di,s,d ∈ {0, 1}Li is the vector containing the temporal
values of the element d, 〈·, ·〉 is the (logical) dot product and
0.5 is the prior probability of the binary test being 1.

XOR XOR XOR XOR

0 100

100 1

1 0011 00 11 00 0

1 0 1 1 1 0 0 1 1 00 010 0 1

Fig. 5. Extraction of the temporal binary descriptor at a single scale. The
location of the interest point in the first frame is tracked in successive frames.
For each frame the rotated sampling pattern is extracted forming a set of binary
vectors (cyan). We then compute the derivative (XOR operation) between
consecutive binary vectors to estimate a second set of binary vectors (magenta)
containing the frame-to-frame stability. For each set, we sum the vectors
followed by thresholding to obtain the vector of the most frequent binary
values and the vector of the most stable tests over time, respectively.

To account for noise during the temporal matching due
to photometric and/or geometric changes, we allow some
variations in the binary test outcome, at a rate lower than
20% of the length of the feature track (i.e. if the minimum
length of a feature track is 5 frames, we allow only one
change for each binary test). We then compute a second vector,
d′i,s ∈ {0, 1}

(Li−1)×D, that captures the temporal changes,
i.e. instability, of the binary tests in di,s via a bit-wise XOR
of two consecutive binary descriptors. As for zi,s, we reduce
d′i,s to mi,s ∈ {0, 1}D as:

mi,s,d =

{
1 if 1

Li−1 〈d
′
i,s,d,1〉 ≤ 0.2,

0 otherwise.
(9)

We refer to zi,s and mi,s as the vector of temporally domi-
nant bits and the vector of temporally stable bits, respectively.

The dimensionality of the MST descriptor, 2 × D × S,
depends on the chosen number of scales, S, the length of
the vector of temporally dominant bits and the vector of
temporally stable bits, 2×D. Note that D depends on the di-
mensionality of the specific employed image-based binary de-
scriptor. Moreover, the total number of binary tests performed
by MST depends on the length, Li, of the feature trajectory.
For example, considering 5 scales, a binary descriptor such as
ORB (D = 256), and a maximum length of 50 frames, the
minimum number of binary tests is 6400 (the maximum is
64000), and the dimensionality of MST is 2560 bits.

C. Matching

After estimating the multi-scale temporal descriptors, we
aim to find a set of matches across cameras. As the scale
at which features should be matched is unknown, we cannot
directly apply for matching nearest neighbour [9] or bag of
words [4]. For this reason we estimate the minimum cross-
scale distance between feature pairs. To this end, let us
introduce α and β as indices of two cameras.
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Fig. 6. Graphical representation of the descriptor matching using the
temporally dominant and temporally stable vectors at a single scale between
descriptors of two different cameras. After selecting the stable bits of the
resulting difference vector between the temporally dominant vectors, the
weighted Hamming distance is applied (see Eq.12 [1]). Unstable bits are
denoted with an orange dot.

We first remove temporally unstable bits of zαi,s and zβj,l
(see Fig. 6) using a weighted Hamming distance [51]. Let the
masked Hamming distance using only mα

i,s be defined as

〈mα
i,s, z

α
i,s ⊕ zβj,l〉, (10)

where ⊕ is the XOR operator. Let the number of stable binary
tests for zαi,s be defined as

Nα
i,s = 〈mα

i,s,1〉 (11)

and, similarly, Nβ
j,l for zβj,l.

We then compute the dissimilarity, hi,j(s, l), between de-
scriptor pairs as:

hi,j(s, l) =
Nα
i,s〈mα

i,s, z
α
i,s ⊕ zβj,l〉+Nβ

j,l〈m
β
j,l, z

α
i,s ⊕ zβj,l〉

Nα
i,s +Nβ

j,l

,

(12)
and identify the minimum across scales, S = {1, . . . , S}, as

hi,j(s
∗, l∗) = min

s,l∈S
hi,j(s, l), (13)

and |s∗ − l∗| is the scale offset between the interest points.
To remove possible ambiguities, we determine the final set

of matches through nearest neighbour followed by the Lowe’s
ratio test that validates a match only if the similarity distance
of the closest neighbour is sufficiently lower than the distance
from the second nearest neighbour [2], [9].

D. Discussion

The proposed MST descriptor handles scale and viewpoint
differences by exploiting multi-scale extraction with a grid-
based and scale-invariant suppression strategy, and temporal
variations obtained by tracking local binary image features.
As our approach encodes the temporal information of feature
trajectories in a compact descriptor, we differ from Daisy-
3D [20], which concatenates tracked 2D Daisy features in
a fixed window thus limiting the amount of information
and variations captured by the spatio-temporal feature and
requiring an expensive matching approach between cameras.
We also differ from LMED [7], which uses the ORB binary
descriptor and selects the single descriptor over time with the
least median distance with respect to all the tracked ORB
descriptors within the feature trajectory. While the chosen
descriptor can reduce drifts in the feature tracks, this descriptor

may not be suitable when matching features across cameras.
Unlike STB [26], which describes the trajectory and temporal
gradients of a fixed-size spatio-temporal volume, we obtain
varying-length spatio-temporal features by directly accumu-
lating image-based binary features, followed by a reduction
to a compact, fixed-size representation. Moreover, we handle
scale differences when matching different views through multi-
scale extraction and representation. Finally, unlike BOLD [51],
which computes the stability vector with small geometric
variations of the sampling pattern, we determine the stability
by exploiting the temporal variations within a feature track.
The stability is thus used as a selector when computing the
distance between MST descriptors. The proposed framework
is validated in the next section.

V. VALIDATION

A. Experimental Setup

We compare our proposed spatio-temporal descriptor, MST
against the method based on ORB-SLAM [7] for the process-
ing of each sequence (feature track extraction and descriptor
reduction) and a matching with the Bag of Binary Words
(e.g. DBoW2 [4]). We also compare MST against (i) SetDesc,
the set of image-based binary descriptors of a feature track
without reduction; (ii) T-D, extracted at a single scale with
a reduction of the set of binary descriptors with only the
temporally dominant bit approach [29], (iii) T-DS, which
complements T-D with a vector that contains the temporally
stable bits [29], (iv) LMED, which selects the single binary
descriptor from SetDesc that has the least median distance
compared to all other descriptors within the feature track [7],
and (v) MST-S, which corresponds to our spatio-temporal
descriptor without the stability vectors.

To fairly compare all the descriptors, we obtain feature
tracks with our approach and we then compute the correspond-
ing descriptors. We use the most suitable dissimilarity measure
for each descriptor when matching features. For SetDesc, we
find the minimum Hamming distance between all possible
pairs of single descriptors between the sets of descriptors
belonging to two different sequences (set2set min dist [65]).
However, as finding the minimum across both scales and
time is computationally expensive, we extract and match the
sets only at the original scale. Note that we expect SetDesc
extracted also at multiple scales to achieve higher matching
performance than without scale. For T-D and LMED, we use
the standard Hamming distance as dissimilarity measure, while
we use the weighted Hamming distance (Eq. 12) for T-DS
and MST as their descriptors contain the additional stability
vector. Finally, we consider the cross-scale matching approach
between single-scale descriptor pairs for MST-S and MST.

We not only apply the binary spatio-temporal features to a
range of image-based binary descriptors, namely ORB [15],
BRIEF [14], LDB [32], LATCH [18], RFD [50], and the
learned, CNN-based DeepBit [52], but we also adapt the
overall framework to histogram-based descriptors, and include
SIFT [2] as an example. In this latter case, we replace
the intensity centroid method [64] with the SIFT orientation
assignment [2]. When tracking features, after estimating the
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desk office courtyard gate

Fig. 7. A sample frame for each sequence of the four sets. Note the differences in viewpoint and/or scale between sequences within the same set.

average SIFT descriptor within the trajectory, up to frame
k−1, we estimate the ratio between the distance of the current
SIFT with the average descriptor and the distance of the SIFT
descriptor at the localised frame and the average descriptor.
Following the inverse of the Lowe’s distance ratio test [2], we
terminate a trajectory if its ratio is lower than 0.6. For SIFT,
we apply SetDesc and T-D as spatio-temporal features. Note
that T-D corresponds to the average SIFT over time (similarly
to the representation used in SfM pipelines [5]).

We use pairs of sequences, captured with hand-held
cameras, from publicly available datasets: TUM-RGB-
D SLAM [66]; courtyard2 [67]; and gate, a dataset we
collected and make available to the research community. From
TUM-RGB-D SLAM we use two clips of 50 frames (640×480
pixels) with sufficient overlap from desk (with similar motion)
and office (cameras move in opposite directions). From the first
and fourth video of courtyard, we select the first 50 frames
(800×450 pixels) after sub-sampling the videos from 50 to
25 fps. We select the first 100 frames (1280×720 pixels) of
the four sequences of gate after down-sampling the video to
10 fps from 30 fps. We pair the first sequence with each of
the other three sequences and we refer to each pair as gate-
1, gate-2, gate-3, respectively. Fig. 7 shows a frame for each
sequence.

B. Parameter Settings and Choices

We set the parameters using values from related works or
corresponding implementations: the FAST threshold is 25 [57],
the block size for the grid is w = 30 [7]. To extract the multi-
scale descriptor, we consider a pyramid of S = 5 scales [15]
with a scale factor λ = 1.15. The patch size depends on
the chosen image-based binary descriptor (e.g. G = 31 for
ORB [15]). Features are tracked with the pyramidal Kanade-
Lucas-Tomasi tracker [30] available in OpenCV using a win-
dow size of 21 pixels, 5 scales and maximum 30 iterations.
We discard tracked features whose distance from the image
boundaries at the coarsest level is less than half of G, which
ensures the extraction of the descriptors at multiple scales. To
reduce uncertainty in the triangulation, we enforce the feature
track to be at least 5 frames long assuming that there is enough
camera motion (translation) [62]. In addition, we set the radius
of the non-maxima suppression for the grid-based detection

2drone.sjtu.edu.cn/dpzou/project/coslam.php, accessed: March 2018

to 3 pixels; and we detect new interest points every n = 5
frames3 using a 7×7 masking window around the location of
each existing feature track.

C. Performance Measures

We quantify the number of correct matches over the number
of estimated matches (precision, P ); the number of correct
matches over the number of ground truth correspondences
(recall, R); and their harmonic mean (F1 score):

F1 = 2× P ×R
P +R

, (14)

and the average matching time per descriptor pair to evaluate
the different spatio-temporal approaches.
P and R are generally used for features between image

pairs with known ground truth homographies [1], [9], [69].
Therefore to compute P and R for feature trajectories, we
annotate reference correspondences of feature tracks using
multi-view geometry [62] and reconstruct the 3D point asso-
ciated to each feature track using the absolute camera poses.
We then geometrically verify that the projection of the point
into the second view is within the image borders for at
least five frames. Next we compute the root mean square
residual (RMS) between feature track pairs from the two
views and validate only pairs whose RMS is smaller than 5
pixels. We determine the number of unique correspondences
(i.e. one feature track cannot be paired with more than one in
another view) using the nearest neighbour approach. Then, we
consider the nearest neighbour with the Lowe’s ratio test [2],
[9] as similarity matching strategy between spatio-temporal
descriptors to compute precision, recall and F1 score. The
threshold for the ratio test is 0.8 [7]. We determine correct
matches as those matches whose RMS is smaller than 5
pixels. This ground truth (calibration data and camera poses) is
available with the dataset. For courtyard and gate, the ground
truth is annotated using COLMAP [5].

D. Results

Fig. 8 shows the percentage of survived trajectories, dis-
carded feature tracks because of the short length, and tracks
discarded by geometric tests as processed by MST for each

3We aim to reproduce the automatic keyframe selection strategy of Visual
SLAM/Odometry methods (around 5-10 keyframes per second) [7], [68].

drone.sjtu.edu.cn/dpzou/project/coslam.php
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Fig. 8. Percentage of surviving feature tracks ( ) after discarding tracks whose
length is shorter than five frames ( ) or invalidated by geometric tests ( ).
Note that the number of feature tracks invalidated by the geometric tests are
less than 0.1% for most of the sequences.
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Fig. 9. F1 score comparison between MST and the BoW approach. For each
sequence pair, we show three cases for BoW. BoW-A: the best image match
is estimated among all keyframes of both cameras. BoW-L2: the best image
match is estimated between the last keyframe of the second camera against all
the keyframes of the first camera; BoW-L1: the best image match is estimated
between the last keyframe of the first camera against all the keyframes of the
second camera. BoW-based matching results are obtained by running ORB-
SLAM [7] over 30 runs for both camera sequences simultaneously.

sequence pair. The total number of feature tracks is ∼135000.
The high number of feature tracks denotes the frequent re-
localisation of many interest points. Because of the short
length, the method discards more than 50% of the feature
tracks in most of the sequences except desk where the camera
moves slowly. In gate-3, the geometric tests invalidate ∼25%
of the feature tracks due to camera shaking.

Fig. 9 compares the F1 score of our proposed method,
MST, against BoW, the cross-camera matching based on ORB-
SLAM and the Bag of Visual Binary Words [4], [7]. We
consider three variants of BoW: all the keyframes of camera
1 are compared against all the keyframes of the camera
2 (BoW-A); the last keyframe of camera 1 is compared
against all the keyframes of camera 2 (BoW-L1); and the last
keyframe of camera 1 is compared against all the keyframes
of camera 2 (BoW-L2). The last two variants recall scenarios
where only one keyframe (usually the last) is sent/received by
each camera [8], [70]. To account for the non-deterministic
nature of ORB-SLAM, we run ORB-SLAM 30 times for
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Fig. 10. Accuracy (F1 score) when varying the maximum number of features
per frame (fpf) using ORB [15]. The fpf depends on the localisation in the
first frame and re-detection. Note the different scales of the vertical axes.
Legend: SetDesc, LMED, T-D, T-DS, MST-S, MST.

each sequence using the same settings of our approach. While
BoW creates a feature vector using all the local features of
a frame, the matching within ORB-SLAM limits the valid
matches to features with a corresponding 3D point, similar
to our MST. MST outperforms BoW on all sequence pairs.
In desk where geometric variations are small, MST slightly
outperforms BoW, while the benefit of our approach is clearly
visible in courtyard, gate-1 and gate-3 where geometric dif-
ferences are more challenging. In the most severe viewpoint
differences of office and gate-2, MST outperforms BoW by
more than 10% and 5%, respectively. Note that in gate-2
the two cameras approach the same point of the scene from
different viewpoints.

Fig. 10 compares the matching performance when varying
F to quantify the impact of the number of feature points
localised in the first frame or during the re-detection. For
courtyard, office, and gate-3, MST outperforms other descrip-
tors independently of the number of localised features. In desk,
where the scene has low texture and small geometric varia-
tions, SetDesc achieves the best performance. When F = 500,
the performance of MST-S and MST is close to SetDesc, while
when increasing F the performance of MST converges to that
of T-DS, suggesting that the multi-scale is not important in this
scenario. We can also observe that, unlike the behaviour of the
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TABLE II
MATCHING RESULTS WITH THE NEAREST NEIGHBOUR STRATEGY AND LOWE’S RATIO TEST USING ORB FEATURES. BEST RESULTS IN BOLD, SECOND

BEST IN ITALIC. LEGEND: M : NUMBER OF MATCHES. P : PRECISION. R: RECALL. F1 : F1 SCORE.

desk office courtyard gate-1 gate-2 gate-3
M P R F1 M P R F1 M P R F1 M P R F1 M P R F1 M P R F1

SetDesc 444 54.28 18.84 27.97 560 38.21 8.16 13.45 853 73.27 18.13 29.06 895 57.21 21.10 30.82 338 19.23 4.79 7.67 880 52.05 19.26 28.12
LMED 321 47.04 11.81 18.87 453 27.37 4.73 8.06 632 57.44 10.53 17.79 693 46.18 13.19 20.51 282 14.18 2.95 4.88 668 43.41 12.20 19.04
T-D 328 46.65 11.96 19.04 454 33.48 5.79 9.88 671 63.64 12.38 20.73 700 50.00 14.42 22.39 265 16.23 3.17 5.30 741 45.34 14.13 21.55
T-DS 481 44.28 16.65 24.20 692 26.45 6.98 11.04 1021 50.93 15.08 23.27 1036 41.89 17.88 25.06 508 11.42 4.27 6.22 1112 36.33 16.99 23.15
MST-S 388 44.85 13.60 20.88 541 43.44 8.96 14.85 1214 85.17 29.99 44.36 892 56.50 20.77 30.37 319 18.81 4.42 7.16 1095 55.07 25.36 34.73
MST 533 42.40 17.67 24.94 834 36.57 11.63 17.65 1610 74.91 34.98 47.69 1293 48.18 25.67 33.49 584 14.55 6.26 8.76 1562 46.09 30.28 36.55

other approaches, the performance of SetDesc increases when
F = 1000 in gate-2 and gate-1. In gate-2 SetDesc achieves the
highest F1 score. Overall, we can observe that increasing the
maximum number of features localised or re-detected does not
result in an increase of the performance, but on the contrary
the performance tends to decrease in most of the sequence
pairs for most of the approaches. For fair comparison, we do
not fine-tune the number of features and we set F = 2000
across all sequences for the last comparison results.

Table II compares the matching performance of spatio-
temporal descriptors extracted from the feature tracks. The
number of reference correspondences is 1280 for desk, 2623
for office, 3448 for courtyard, 2427 for gate-1, 1357 for
gate-2, 2378 for gate-3. We can observe that the additional
stability vector of T-DS and MST leads to higher recall but
lower precision than T-D and MST-S. Moreover, the multi-
scale representation, MST-S and MST, allows to improve
the performance of the proposed temporal reduction, i.e. T-
D and T-DS. MST outperforms other approaches in terms
of recall across all sequence pairs except desk that contains
sequences with limited motion in the same direction and
similar viewpoint in an indoor environment with low texture.
The higher recall also influences the performance of the F1

score except for gate-2 where the stability vector allows to
estimate almost twice the number of matches with several false
positives (85/584 for MST vs 60/319 for MST-S), considerably
decreasing the precision. We can observe that due to the severe
change in viewpoint between the cameras, office and gate-2
are the most challenging sequence pairs with recall lower than
12% for all approaches.

We now evaluate the spatio-temporal features without the
geometric tests, but still filtering out short feature tracks (see
Fig. 8). Table III shows, for each spatio-temporal feature and
for each sequence pair, the difference between the F1 score
with and without geometric tests. We can observe that adopting
the geometric tests has a minimal impact on the accuracy for
SetDesc, LMED, T-D, and MST across all sequence pairs,
while T-DS and MST-S are the most sensitive to this step as
their accuracy decreases up to 6% and less than 3% in F1

score, respectively.
Fig. 11 shows correct matches obtained with MST. Recon-

structed 3D points are re-projected in pairs of selected frames
for gate-1, gate-2, and gate-3 with changes in both scale and
viewpoint. Fig. 12 quantifies the maximum viewpoint angle for
MST features when estimated within each sequence and when
correctly matched across cameras, for all sequence pairs. The

TABLE III
DIFFERENCE BETWEEN THE F1 SCORE (%) OF SPATIO-TEMPORAL

FEATURES WHEN EXTRACTING FEATURE TRAJECTORIES WITH AND
WITHOUT 3D GEOMETRIC TESTS

Method Sequence pair

desk office courtyard gate-1 gate-2 gate-3
SetDesc .00 -.12 -.01 .00 -.03 .10
LMED -.02 -.01 -.08 -.01 -.01 -.16
T-D .00 .00 .00 .00 .00 .00
T-DS -4.80 -3.00 -3.10 -3.90 -5.20 -6.60

MST-S -1.70 -.89 -.75 -1.40 -1.50 -2.60
MST -.21 -.01 -.15 -.16 -.09 -.26

Fig. 11. Correct matches (green lines) with MST by re-projecting the 3D
points (red dots) in a selected pairs of frames. Top: scale difference in gate-3;
bottom: viewpoint and scale difference in gate-1.

viewpoint angle is computed using the cosine formula between
the reconstructed 3D point and two camera locations, where
the 3D point is observed. For each MST feature, we estimate
the angle between each pair of views where the corresponding
3D point is visible, and we then find the view pair with
the maximum angle. Most trajectories can handle up to 10
degrees of viewpoint difference, while there are features that
can handle differences of up to 30 degrees. As feature tracking
is performed with a validation strategy based on the image-
based binary descriptor, the maximum viewpoint variation is
constrained by the limitation in the geometric variations of
the descriptor itself (e.g. ORB is not robust to viewpoint
differences). The distribution of the maximum viewpoint angle
for correctly matched MST features across cameras shows
that the proposed approach can handle differences of up to
40 degrees.
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Fig. 13 shows the average F1 scores and matching times,
while Table IV shows the total time to match the descriptors
for each sequence pair. The total matching time depends on the
number of feature trajectories in each sequence. Set represen-
tations such as SetDesc, MST-S, and MST have a higher F1

score but, as expected, are slower than LMED, T-D, and T-DS,
because of the set2set min dist strategy. The computational cost
of MST-S and MST is quadratic with respect to the number
of scales, O(S2), whereas the computational cost of SetDesc
depends on the length of the trajectories, thus resulting in a
large (temporal) standard deviation. On average, the matching
performance of these approaches is higher than LMED, T-D,
and T-DS, but with a larger deviation. Note that the additional
stability vector in T-DS and MST associated with the weighted
Hamming distance (Eq. 12) doubles the matching time with
respect to their counterparts, T-D and MST-S. As a reference
for a histogram-based descriptor, we also report the total
matching when applying SetDesc and T-D to SIFT. However,
the timing between the two employed image-based descriptors
are not comparable as the number of feature trajectories, as
well as their length, differs from each other.

TABLE IV
TOTAL MATCHING TIME FOR EACH SEQUENCE PAIR AND FOR EACH

SPATIO-TEMPORAL FEATURE (IN SECONDS). NOTE THAT SIFT AND ORB
ARE NOT COMPARABLE DUE TO THE DIFFERENT NUMBER OF FEATURE

TRAJECTORIES FOR EACH SEQUENCE. OBSERVE THE COMPARISON
BETWEEN SPATIO-TEMPORAL FEATURES FOR EACH ROW

Seq. pair Desc. #FT Total matching time (s)

Seq1 Seq2 SetDesc LMED T-D T-DS MST-S MST

desk SIFT 1486 658 46 10
ORB 1198 1005 55 13 14 14 16 23

office SIFT 2402 726 45 17
ORB 2305 2566 115 55 56 64 71 104

courtyard SIFT 3214 3830 939 151
ORB 4416 4950 331 186 188 216 241 358

gate-1 SIFT 2673 465 35 11
ORB 7806 7000 1288 492 486 558 625 904

gate-2 SIFT 2673 1763 186 47
ORB 7806 7185 1575 519 515 587 657 942

gate-3 SIFT 2673 1788 216 53
ORB 7806 7211 1633 522 519 596 664 947

E. Comparison of Binary Descriptors

The proposed spatio-temporal approaches are generic and
can be applied to different image-based binary descriptors.
As we model feature track extraction and spatio-temporal
descriptor considering binary descriptors based on sampling
patterns and dominant orientation, we analyse and compare
the spatio-temporal approaches using BRIEF [14], ORB [15],
LDB [32], and LATCH [18] as baselines. Note that we steer
all binary reference descriptors according to the estimated
orientation using the intensity centroid method [64]. We in-
tegrate the OpenCV implementation of BRIEF, ORB, and
LATCH, and the author’s implementation of LDB4 in our own
implementation.

While BRIEF and ORB compares intensity values of pixel
pairs, LDB compares the mean intensity and the directional
gradients of regular sub-windows within the patch with a
multi-grid approach; and LATCH compares the norm of the
difference between two sub-windows using a triplet of sam-
pling points within the patch, with one point acting as anchor.
It is noteworthy that most of the binary descriptors smooth
the image (or scale level in an image pyramid) to reduce the
sensitivity to noise in the intensity values [14], [15], [32],
unless small windows are used (e.g. LATCH [18]).

We also include DeepBit [52] in the comparison, as a learnt
CNN-based but non sampling-pattern based descriptor, and
RFD [50] (both RFDR and RFDG), as a binary descriptor
based on receptive fields followed by thresholding. Note that
the dimensionality of previous descriptors is 256 bits, while
the dimensionality of RFDR is 293 and that of RFDG is
4055. Unlike previous descriptors, DeepBit cannot directly
be employed within the full method, such as feature point
tracking, and therefore we applied DeepBit on the patches
belonging to feature tracks extracted using ORB features.
We consider the 256 bit version trained on the Liberty (DB-

4http://lbmedia.ece.ucsb.edu/research/binaryDescriptor/web home/web
home/index.html, accessed: Dec 2018

5http://www.nlpr.ia.ac.cn/fanbin/rfd.htm

http://lbmedia.ece.ucsb.edu/research/binaryDescriptor/web_home/web_home/index.html
http://lbmedia.ece.ucsb.edu/research/binaryDescriptor/web_home/web_home/index.html
http://www.nlpr.ia.ac.cn/fanbin/rfd.htm
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Fig. 14. Average F1 score and standard deviation across all sequence pairs,
targeting a maximum of 2000 local features per frame during localisation.
Comparison between binary (ORB), histogram-based (SIFT), and CNN-based
(DeepBit) descriptors. Note that for SIFT, we compute only the set of SIFTs
over time (SetDesc) and the average within the set as reduction (T-D). Legend:

SIFT, DeepBit (Yosemite), DeepBit (Notre-Dame), DeepBit (Liberty),
RFDR, RFDG, LATCH, LDB, BRIEF, ORB.

L), NotreDame (DB-N), and Yosemite (DB-Y) landmarks of
the UBC Phototourism dataset [55]. To also compare with a
histogram-based descriptor, we provide results of SetDesc and
T-D applied to SIFT [2].

Fig. 14 shows the F1 score performance averaged across
all sequence pairs using F = 2000. We can observe that RFD
is a better choice for any of the spatio-temporal approaches
given its higher accuracy, while DeepBit is the worst, followed
by LATCH. The performance of LATCH and DeepBit shows
how learning on a specific dataset (Phototourism) makes
generalisation to other scenarios still a challenge. When using
our multi-scale approach, MST, ORB, LATCH, and LDB
become other valid alternatives to RFD. Note that selecting
stable bits marginally improves the average performance of
MST over MST-S.

Table V compares the timings6 to extract the spatio-temporal
features when employing the different image-based descriptor
on three testing sequences (desk, courtyard, and gate-1) with
varying image resolutions and content. We compare the impact
of SIFT, ORB, BRIEF, LDB, LATCH, RFD on the overall

6All the experiments are performed using a machine with Intel R©CoreTM

i7-4790S CPU @ 3.20GHz × 8, 15.6 GBi RAM, and running Ubuntu 18.04

TABLE V
EFFICIENCY ANALYSIS ON THREE TESTING SEQUENCES WITH DIFFERENT

RESOLUTIONS. NOTE THAT SIFT IS NOT DESCRIBED AT MULTIPLE SCALES.
LEGEND – DET.: DETECTION TIME PER FEATURE. DESC.: (MULTI-SCALE)

DESCRIPTION TIME PER FEATURE. TRACK.: TRACKING TIME PER
FEATURE. FRAME: AVERAGE TIME TO PROCESS A FRAME. VAL: TIMING
FOR 3D GEOMETRIC TESTS. RED: TIMING FOR TEMPORAL REDUCTION.

#FT: NUMBER OF FEATURE TRAJECTORIES

Frame timings Post-processing timings

DET DESC TRACK FRAME #FT VAL RED #FT
(µs/feat) (µs/feat) (µs/feat) (s) bef. (s) (s) after

de
sk

SIFT∗ 11.75 25.98 50.95 0.04 3431 1.38 0.01 1486

ORB 16.82 60.63 842.73 0.42 1751 1.08 1.19 1198
BRIEF 10.17 173.92 988.33 0.21 514 0.49 0.50 423
LDB 10.91 177.04 889.67 0.16 638 0.33 0.45 486
LATCH 9.51 301.16 932.19 0.16 755 0.25 0.41 525
RFDR 10.12 1645.10 2492.61 1.25 4159 0.95 1.11 992
RFDG 9.90 14474.67 15066.39 7.46 5215 0.49 1.02 1055

co
ur

ty
ar

d

SIFT∗ 15.61 16.79 37.39 0.07 7001 3.61 0.03 3214

ORB 11.73 30.90 318.05 0.37 12055 0.56 2.00 4416
BRIEF 9.10 67.63 391.47 0.20 3751 0.31 1.10 2225
LDB 8.74 111.65 386.26 0.15 4716 0.18 0.75 1887
LATCH 9.18 257.21 494.12 0.17 5782 0.09 0.42 1262
RFDR 23.36 1642.86 1946.34 1.86 15512 0.34 1.18 2346
RFDG 23.82 14546.47 14463.49 13.93 17512 0.17 0.78 1624

ga
te

SIFT∗ 13.12 28.41 57.01 0.10 8373 11.22 0.02 2673

ORB 13.36 30.54 726.64 1.09 19713 6.38 6.64 7806
BRIEF 8.91 45.59 1248.11 1.86 12035 14.69 8.08 6316
LDB 9.33 74.26 737.62 0.91 15365 4.89 5.60 6818
LATCH 8.82 202.29 726.02 0.80 18403 2.86 4.54 6438
RFDR 23.83 1623.85 2293.06 2.64 27017 3.71 4.02 4560
RFDG 23.88 14429.77 14690.71 15.61 31392 1.41 2.84 3632

extraction of the (multi-scale) spatio-temporal features in
terms of detection time per image feature, the multi-scale
description time per image feature, the tracking time per
image feature (including both KLT, descriptor extraction, and
descriptor validation), the average time per frame, and the
post-processing time consisting of the 3D geometric tests and
temporal reductions. To make the comparison fair, all the
binary descriptors are integrated within the same implemen-
tation, except DeepBit that extracts the descriptors from the
patches of the final feature trajectories obtained with ORB. We
refer the reader to the analysis of the running times provided
by [52], which shows that the processing of the patches in
batches makes the extraction slow and not comparable with
other binary descriptors in our application. As SIFT is also
integrated and adapted in the framework, we report its results
as reference.

We can observe that even though RFD is the most accurate
in Fig. 14, the average frame processing time is highly
affected, especially due to the high extraction time of the
descriptor at multiple scales7. Even if ORB is the fastest
among the sampling-pattern based approaches in describing
each feature at multiple scales, LDB and LATCH require
less time, on average, to process each frame. The single
scale extraction of the SIFT descriptor achieves the fastest
processing of a frame, on average. Then, it is important to
note how each image-based descriptor affects the number of
estimated feature trajectories before the 3D geometric tests

7Slow extraction time was also observed in [13].
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and temporal reduction, and that this number largely varies.
Moreover, each feature trajectory varies in length affecting
the final timing to validate in 3D, which is more noticeable
in sequence 1 of gate that contains 100 frames instead of
50 and has a higher resolution (1280×720). Note that ORB
has the highest number of feature trajectories after the 3D
geometric tests across all the sequences, except desk where
SIFT obtains a higher number. The temporal reduction is done
for all validated trajectories and for LMED, T-D, T-DS, MST-
S, and MST, all in once. Again, this timing is affected by both
the number of feature trajectories and their varying length.
SIFT is the fastest because the temporal reduction is performed
only for T-D.

VI. CONCLUSION

We presented a novel spatio-temporal multi-scale descriptor
that accounts for viewpoint and scale variations across moving
cameras in non-planar scenes. The proposed descriptor en-
codes, at multiple scales, temporal dominant and stable binary
values of the neighbourhood of a 3D point from tracked binary
features. The description matching function uses a cross-scale
strategy to handle scale variations. Experiments showed the ad-
vantage of the proposed approach over alternative approaches
for reducing the temporal descriptors. Moreover, we showed
that our approach is generic and can be applied to several
existing image-based binary descriptors.

Future work includes investigating descriptor-reduction
methods across scales to reduce the computational time of
the cross-scale matching and the application of our approach
to local feature descriptors for RGB-D or depth data [71], [72]
for higher viewpoint-invariance.
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2018.

[40] D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-
supervised interest point detection and description,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. Workshops, Salt Lake City, UT, USA,
Jun. 2018.

[41] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation
for local image descriptors,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Washington, DC, USA, Jun.–Jul. 2004.

[42] F. Bellavia, D. Tegolo, and C. Valenti, “Keypoint descriptor match-
ing with context-based orientation estimation,” Image Vis. Computing,
vol. 32, no. 9, pp. 559–567, Sep. 2014.

[43] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust
Features,” in Proc. Eur. Conf. Comput. Vis., Graz, Austria, May 2006.

[44] Z. Wang, B. Fan, and F. Wu, “Local intensity order pattern for feature
description,” in Proc. IEEE Int. Conf. Comput. Vis., Barcelona, Spain,
Nov. 2011.

[45] Z. Wang, B. Fan, G. Wang, and F. Wu, “Exploring local and overall
ordinal information for robust feature description,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 11, pp. 2198–2211, Nov. 2016.

[46] T. Hassner, S. Filosof, V. Mayzels, and L. Zelnik-Manor, “SIFTing
through scales,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 7,
pp. 1431–1443, Jul. 2017.

[47] I. Laptev, “On space-time interest points,” Int. J. Comput. Vis., vol. 64,
no. 2-3, pp. 107–123, Sep. 2005.

[48] T. Trzcinski and V. Lepetit, “Efficient discriminative projections for
compact binary descriptors,” in Proc. Eur. Conf. Comput. Vis., Firenze,
Italy, Oct. 2012.

[49] T. Trzcinski, C. M. Christoudias, and V. Lepetit, “Learning image
descriptors with boosting,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 3, Mar. 2015.

[50] B. Fan, Q. Kong, T. Trzcinski, Z. Wang, C. Pan, and P. Fua, “Receptive
fields selection for binary feature description,” IEEE Trans. Image
Process., vol. 23, no. 6, pp. 2583–2595, Jun. 2014.

[51] V. Balntas, L. Tang, and K. Mikolajczyk, “Binary Online Learned
Descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3,
Mar. 2018.

[52] K. Lin, J. Lu, C. Chen, J. Zhou, and M. Sun, “Unsupervised deep
learning of compact binary descriptors,” IEEE Trans. Pattern Anal.
Mach. Intell., pp. 1–14, May 2018.

[53] J. Ye, S. Zhang, T. Huang, and Y. Rui, “CDbin: Compact discriminative
binary descriptor learned with efficient neural network,” IEEE Trans.
Circuits Syst. Video Techn., pp. 1–13, Jan. 2019.

[54] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua, “LDAHash:
Improved matching with smaller descriptors,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 1, pp. 66–78, Jan. 2012.

[55] S. Winder and M. Brown, “Learning local image descriptors,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Minneapolis, MN, USA,
Jun. 2007.

[56] C. Wu, “SiftGPU: a GPU implementation of scale invariant feature
transform (SIFT),” 2011, http://cs.unc.edu/∼ccwu/siftgpu.

[57] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in Proc. Eur. Conf. Comput. Vis., Graz, Austria, May 2006.

[58] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors: A
survey,” Found. and Trends in Comput. Graph. and Vis., vol. 3, no. 3,
pp. 177–280, Jun. 2008.

[59] C. Harris and M. Stephens, “A combined corner and edge detector,” in
4th Alvey Vis. Conf., Manchester, UK, Aug.–Sep. 1988.

[60] J. Shi and C. Tomasi, “Good features to track,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Seattle, WA, USA, Jun. 1994.

[61] Z. Zhang, “A flexible new technique for camera Calibration,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 11, pp. 1330–1334, Nov.
2000.

[62] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2003.

[63] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. IEEE Int. Conf. Comput. Vis., Kerkyra, Greece, Sep. 1999.

[64] P. L. Rosin, “Measuring corner properties,” Comput. Vis. Image Under-
standing, vol. 73, no. 2, pp. 291–307, Feb. 1999.

[65] T. Hassner, V. Mayzels, and L. Zelnik-Manor, “On SIFTs and their
scales,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Providence,
RI, USA, Jun. 2012.

[66] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in Proc. IEEE
Int. Conf. Intell. Robot Syst., Vilamoura, Portugal, 7–12 Oct. 2012.

[67] D. Zou and P. Tan, “CoSLAM: Collaborative visual SLAM in dynamic
environments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 2,
pp. 354–366, Feb. 2013.

[68] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3, pp. 611–625, Mar.
2018.

[69] J. Heinly, E. Dunn, and J. Frahm, “Comparative evaluation of binary
features,” in Proc. Eur. Conf. Comput. Vis., Firenze, Italy, Oct. 2012.

[70] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collaborative
monocular SLAM with multiple micro aerial vehicles,” in Proc. IEEE
Int. Conf. Intell. Robot Syst., Tokyo, Japan, Nov. 2013.

[71] A. Zeng, S. Song, M. Niessner, M. Fisher, J. Xiao, and T. Funkhouser,
“3DMatch: Learning local geometric descriptors from rgb-d reconstruc-
tions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu,
HI, USA, Jul. 2017.

[72] G. Georgakis, S. Karanam, Z. Wu, J. Ernst, and J. Košecká, “End-to-
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