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ABSTRACT

Local image features play an important role in matching images
under different geometric and photometric transformations. How-
ever, as the scale difference across views increases, the matching
performance may considerably decrease. To address this problem
we propose MORB, a multi-scale binary descriptor that is based on
ORB and that improves the accuracy of feature matching under scale
changes. MORB describes an image patch at different scales using
an oriented sampling pattern of intensity comparisons in a prede-
fined set of pixel pairs. We also propose a matching strategy that
estimates the cross-scale match between MORB descriptors across
views. Experiments show that MORB outperforms state-of-the-art
binary descriptors under several transformations.

Index Terms— Local features, Feature matching, Binary de-
scriptor, Multi-scale, MORB

1. INTRODUCTION

Descriptive local image features are fundamental for a number of
applications, including Structure from Motion [1], Visual SLAM [2],
Image Matching and Object Retrieval [3]. A local feature describes
the neighbourhood of a keypoint that was localised by a detector,
such as Harris’ [4] or Scale Invariant Feature Transform (SIFT) [3].

Multi-scale detectors aim to achieve scale invariance across
views [5]. Detectors can localise keypoints for each scale inde-
pendently and then select those with maximum response across
scales [6] or directly in the scale-space domain [3]. While local fea-
tures are usually described at the scale determined by the detector
[3][7][8], descriptors can also be extracted at different scales and
reduced by approximation [9], pooling [10] or masking [11].

Local features can be hand-crafted or learnt. Examples of
hand-crafted features include SIFT [3], Speeded Up Robust Fea-
tures (SURF) [12] and Binary Robust Invariant Scale Key-point
(BRISK) [8]. Hand-crafted features for real-time applications in-
clude binary descriptors generated by tests that compare intensity
values of pixel pairs [13][8][14] or small window triplets [15] within
the neighbourhood (or patch) of a keypoint. Keypoints can be de-
tected with, for example, Features from Accelerated Segment Test
(FAST) [16] or Adaptive and Generic Accelerated Segment Test
(AGAST) [17]. The Binary Robust Invariant Elementary Features
(BRIEF) descriptor randomly samples the tests from a Gaussian
distribution [13]. The BRISK descriptor [8] uses a deterministic
sampling pattern whose points lie on appropriately scaled concen-
tric circles. The Fast REtinA Keypoint (FREAK) descriptor [14]
uses a circular pattern with higher density near the centre of the
keypoint.

Examples of learnt features include DeepDesc [18], DeepCom-
pare [19], TFeat [20] DeepBit [21] and Learned Invariant Feature

Transform (LIFT) [22]. These methods exploit Convolutional Neu-
ral Networks and model objective functions to discriminate correct
and incorrect matches learnt during training with ground-truth data.
DeepBit learns instead a binary descriptor in an unsupervised man-
ner. Learnt descriptors have however not yet outperformed hand-
crafted features [23]. A somehow hybrid approach is that of Oriented
FAST and Rotated BRIEF (ORB) [7], a binary descriptor built on the
FAST detector [16], the BRIEF descriptor [13], and a learnt sam-
pling pattern of pixel pairs. However, the matching performance of
ORB decreases considerably when the scale difference across views
increases.

To address this problem, we propose MORB, a multi-scale bi-
nary descriptor that can cope with large scale-variations between
views. The proposed descriptor concatenates binary ORB descrip-
tors extracted at multiple scales. These descriptors are appropriately
rotated to adapt to the varying content within a patch at different
scales (see Fig. 1). To identify the best match and the scale dif-
ference among images, we then compute the cross-scale distance
between MORB descriptors of each view. Correct matches can be
identified at descriptor scales that differ from the scale of the key-
point.

This paper is organised as follows. Section 2 introduces the
multi-scale binary descriptor. Section 3 describes the associated
cross-scale matching strategy. Section 4 discusses the experimen-
tal results. Finally, in Section 5 we draw the conclusion.

2. MULTI-SCALE ORB

Let I = {Is}Ss=1 be a Gaussian pyramid of image I , where each
layer Is is recursively down-sampled by a factor λ, up to scale S.
We apply in each Is independently the FAST detector [16] and retain
only the F features across scales with the highest Harris1 response
[4] in an adaptive way:

Fs =


1−λ
1−λS , if s = 1,

λFs−1, if 1 < s < S,

max (F − Fs−1, 0) if s = S,

(1)

where Fs is the number of features for each scale s.
After smoothing each layer Is with a 2D Gaussian filter with

size W = 7 and standard deviation σ = 2, we extract the descriptor
dmp,s using the rotated ORB sampling pattern on a G × G patch p
centred at each feature location:

dmp,s = [τp,s(u1,v1), ..., τp,s(uq,vq), ...τp,s(u256,v256)], (2)

where uq and vq are the positions of each pixel pair in the sampling
pattern, and m = 1, . . . , F is the index of the m-th feature.

1The Harris score is preferable to the FAST score as cornerness mea-
sure [7].



Fig. 1. The MORB multi-scale descriptor and its cross-scale match-
ing. Once a keypoint is detected at a scale s (green dot), MORB
samples its location for each layer of an image pyramid (red dots)
and determines the patch orientation. A rotated descriptor based on
a sampling pattern for binary derivatives is extracted for each scale
and then contributes to the MORB descriptor. The matching across
scales between MORBs from different view points determines the
scale difference.

15◦ 30◦ 44◦ 63◦ 93◦ 101◦ 110◦ 105◦

153◦ 151◦ 160◦ 176◦ 168◦ 164◦ 174◦ 159◦

Fig. 2. Sample patch orientation changes along the scales (from left
to right) and across views (top row: view 1; bottom row: view 2) for
the proposed MORB descriptor. For each patch we show its orienta-
tion in degrees and 3 sample rods (red, cyan, yellow) from the ORB
sampling pattern.

The function τp,s(·, ·) is a binary test on the intensity values of
pixel pairs at scale s:

τp,s(uq,vq) =

{
1, if Ip,s(uq) < Ip,s(vq),

0, otherwise,
(3)

where Ip,s(uq) and Ip,s(vq) are the intensity values in patch p at
pixel position uq and vq , respectively, and q = 1, ..., 256 corre-
sponds to positions defined by the ORB sampling pattern S. The
pattern S consists of learnt pixel pairs with high variance and low
correlation in their binary derivative [7].

As scale variation is already contained in the Gaussian pyramid,
we keep the patch size fixed across scales. This changes the portion
of the scene captured by the patch at different scales. We also re-
compute the orientation angle θs for each scale s. The angle θs is
calculated with respect to the centre of mass of the patch defined
by the intensity centroid [24]. Each dmp,s is then extracted using the
rotated pattern S̃s, after the rotation Rθs ∈ SO(2) is applied to S:
S̃s = RθsS. Fig. 2 is an example of rotated pattern at different
scales.

The MORB descriptor dmp of patch p concatenates patch de-
scriptors extracted at all layers of the image pyramid:

dmp =
[
dmp,1, . . . ,d

m
p,S

]
(4)
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Fig. 3. Hamming distance matrices for a sample of four pairs of
MORB descriptors. Green boxes denote the scales of keypoint de-
tections. Orange boxes denote the scales of the minimum Hamming
distance (of correct multi-view matches). Note the difference be-
tween the scales of keypoint detection and descriptor matching.

and can support feature matching across views with significant scale
change.

However, to extract the multi-scale descriptor for each keypoint,
MORB scales its image coordinates for each layer s and approxi-
mates them by rounding. This can result in keypoints whose distance
to the image border at the coarsest scale of the Gaussian pyramid af-
ter scaling is lower than half of the patch sizeG and thus inhibits the
extraction of the multi-scale descriptor. We therefore discard these
keypoints that are so close to the borders. We also remove dupli-
cates by discarding one keypoint from every pair of keypoints that
are at most 2 pixels from each other when up-sampled to the original
image scale.

3. CROSS-SCALE MATCHING

Let dmp and dnp be multi-scale descriptors of a keypoint m in a view
and a keypoint n in another view, respectively.

Matching strategies such as nearest neighbour [25] or bag-of-
words [26] are not directly applicable to the MORB descriptor, as
the scales where two local features can be matched are unknown.
We therefore aim to identify the minimum cross-scale distance for
each feature pair.

We first compute an all-to-all single descriptor distance across
scales between each dmp,s and dnp,l, and then we take the minimum
as the cross-scale distance between the keypoints:

hm,n = min
s,l∈S

dmp,s ⊕ dnp,l, (5)

where S = {1, . . . , S}, ⊕ is the XOR operator and dmp,s ⊕ dnp,l
is the Hamming distance between two ORB descriptors. The scales
where the minimum match is found, s∗ and l∗, determine the scale
offset between the two keypoints (s∗ − l∗).

Fig. 3 shows examples of four cross-scale Hamming distance
matrices between matched MORB descriptors. Fig. 4 shows an ex-
ample of cross-scale matching, where the match occurs at scales that
are different from the detection scales.



Fig. 4. Sample corresponding patches at multiple scales across views
with considerable scale variation (top row: view 1; bottom row: view
2). Note the difference between the scales of the keypoint detections
(green squares) and of the MORB matching (orange squares). This
case is related to the top-left matrix in Fig. 3.

The set of putative matches V is estimated via nearest neigh-
bour [25] and with a threshold τ on the descriptor distance to sepa-
rate true and false positive putative matches. While the distribution
of false positives can lie on high descriptor distances, the distribu-
tion of correct matches covers the low ones [13]. We obtain a set of
matches between two views as

N =

{
(m∗, n) |m∗ = argmin

m∈F
hm,n, n ∈ F , hm,n ≤ τ

}
, (6)

where F = {1, . . . , F}. Similarly, we obtain the set of reverse
matches as

M =

{
(m,n∗) | n∗ = argmin

n∈F
hm,n,m ∈ F , hm,n ≤ τ

}
. (7)

The set of valid matches is then V = N ∩M. In the next section
we analyse the impact of the threshold on the effectiveness of our
approach.

4. EXPERIMENTS

We compare MORB with ORB [7] (OpenCV 3.3 implemen-
tation) and with Learned Arrangements of Three patCH codes
(LATCH) [15] using keypoints detected with MORB. In this case,
we refer to ORB and LATCH as cORB and oLATCH, respectively.
As LATCH was paired with SIFT in [15], we also report the results
of LATCH applied on keypoints detected with SIFT (sLATCH). Fur-
thermore, we report results of ORB with its own detections and we
test an all-to-all matching of independent ORB descriptors extracted
for all scales (ORB-ALL).

In the detection phase, MORB uses the same approach as ORB
and thus we consider the same settings: the FAST threshold is 20,
the patch size is G = 31, the number of scales is S = 8, and the
scale factor is 1

λ
= 1.2. Even if the default target number of features

F for each image is 500 in ORB, considering recent evaluations we
set F = 1000 [22]. (We also analysed the performance of MORB
and ORB by varying F from 500 to 1500 with step 250, but we did
not observe any significant performance changes.)

We use as dataset the Oxford Affine Covariance Regions Dataset
(Oxford ACRD) [25] that consists of eight sets of six images un-
der five different conditions: in-plane rotation changes and scale
changes (bark and boat), viewpoint changes (graf and wall), im-
age blur (bikes and trees), illumination changes (leuven), and JPEG
compression (ubc). Moreover, we consider the venice set from [27]
to evaluate performance under scale variations only.

As we propose a scale-aware nearest neighbour matching strat-
egy for MORB, we evaluate ORB and LATCH with the nearest
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ORB sLATCH MORB
Precision .76 .63 .75
Recall .53 .35 .63
Recall vs 1-precision .15 .19 .13
F-score .58 .36 .66

Fig. 5. Precision, recall, recall vs 1-precision, and F-score curves
for the image pair boat 1 – 2. It can be noted in the table that using
area under the recall vs 1-precision curve can lead to inconsistent
ranking. Area under the F-score curve better preserves precision and
recall behaviour as it is computed from their harmonic mean.

neighbour approach as similarity matching [25]. We define a cor-
respondence (as well as a correct match) as the pair of keypoints
with the lowest distance below 2.5 pixels after homography trans-
formation (homographies are provided as ground-truth along with
the dataset), with all keypoints scaled up to the original scale, as
suggested in [27]. To analyse the impact of the descriptor threshold,
we vary τ from 0 to 128, (i.e. half of the size of the descriptor) and
we then compute the number of matches V and the corresponding
number of correct matches to generate precision and recall curves.
Moreover, the area under the curve can be used to compare methods
[10] [15] [28].

Precision and recall can be analysed together through recall vs
1-precision curves [25] or the F-score= 2 Precision×Recall

Precision+Recall . Here, we
propose to evaluate the methods with the area under the F-score
curve as we observed that computing the area under the recall vs. 1-
precision curves with the nearest neighbour matching strategy can
lead to a method ranking that is inconsistent with the ranking ob-
tained with more detailed area under the precision or recall curves
(see Fig. 5). In the recall vs 1-precision curve, a good method should
not significantly decrease in precision and should keep a high recall,
or keep a high recall even if the precision tends to zero. However,
good methods in precision and recall may cover a smaller area than
methods decreasing in precision and having a lower recall, thus re-
sulting in lower performance. On the other hand, the F-score can
preserve the performance of precision and recall for evaluating the
methods. We therefore refer to the area under the F-score curve as
Nearest Neighbour Average F-score (NN–AF). As the NN–AF is in-
sufficient to compare methods, we also compute the matching score
(MS), i.e. the number of correct matches over the minimum num-
ber of features in common after homography transformation, with
τ = 128.

Table 1 shows the NN–AF and MS results for each image pair
in venice and in each set of the Oxford ACRD dataset. MORB



Table 1. Nearest Neighbour Average F-score (NN–AF) and Match-
ing Score (MS) for each image pair for each set of images.
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1 – 3 .61 .04 .45 .05 .49 .69 .45 .05 .33 .06 .30 .44
1 – 4 .41 .00 .31 .00 .28 .56 .20 .00 .16 .00 .12 .25
1 – 5 .35 .00 .25 .00 .17 .38 .12 .00 .09 .00 .05 .14
1 – 6 .12 .00 .14 .00 .05 .14 .03 .00 .04 .00 .01 .05
1 – 7 .01 .00 .02 .00 .02 .09 .00 .00 .01 .00 .00 .03
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1 – 2 .28 .14 .22 .12 .25 .33 .11 .12 .09 .08 .09 .12
1 – 3 .09 .00 .09 .00 .08 .15 .03 .00 .02 .00 .02 .04
1 – 4 .18 .00 .13 .00 .16 .37 .04 .00 .03 .00 .04 .10
1 – 5 .13 .00 .11 .00 .12 .37 .03 .00 .03 .00 .03 .10
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1 – 4 .36 .00 .32 .00 .28 .51 .22 .00 .20 .00 .15 .30
1 – 5 .27 .00 .28 .00 .19 .46 .15 .00 .15 .00 .09 .24
1 – 6 .08 .00 .09 .00 .05 .16 .04 .00 .04 .00 .02 .07
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1 – 2 .55 .43 .49 .33 .48 .64 .46 .39 .39 .33 .34 .45
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1 – 4 .11 .02 .10 .03 .08 .12 .08 .02 .07 .04 .05 .08
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1 – 5 .08 .04 .08 .04 .07 .13 .04 .04 .04 .03 .03 .07
1 – 6 .01 .00 .00 .01 .01 .01 .00 .00 .00 .00 .00 .01

bi
ke

s

1 – 2 .71 .66 .62 .62 .66 .76 .61 .50 .51 .53 .49 .55
1 – 3 .65 .63 .56 .58 .61 .73 .54 .52 .45 .47 .44 .50
1 – 4 .53 .55 .44 .45 .55 .67 .38 .46 .31 .35 .35 .41
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1 – 4 .55 .68 .47 .51 .48 .62 .33 .52 .29 .31 .26 .34
1 – 5 .51 .64 .41 .47 .45 .57 .28 .48 .24 .26 .23 .30
1 – 6 .46 .58 .41 .44 .42 .53 .26 .43 .24 .26 .22 .28
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c

1 – 2 .93 .76 .90 .88 .91 .89 .90 .57 .86 .86 .84 .77
1 – 3 .90 .64 .86 .83 .87 .89 .84 .48 .79 .79 .77 .74
1 – 4 .84 .50 .77 .74 .82 .87 .78 .35 .71 .72 .71 .71
1 – 5 .70 .35 .63 .58 .69 .79 .63 .20 .57 .58 .58 .63
1 – 6 .57 .26 .50 .45 .56 .66 .51 .17 .45 .46 .44 .48

ACRD avg. .39 .29 .34 .28 .36 .47 .28 .23 .25 .23 .24 .30
Total avg. .39 .27 .34 .26 .35 .47 .28 .21 .24 .21 .23 .29

outperforms the other descriptors in the three sets with either only
scale variations (venice) or in-plane rotations and scale variations
(bark and boat) as well as in other sets under other geometric and
photometric transformations, except for illumination changes (leu-
ven). In these last cases sLATCH is the best performing method.
As oLATCH performs similarly to cORB in leuven, the good per-
formance of sLATCH is possibly due to the keypoint detected with
SIFT. Nevertheless, LATCH is sensitive to scale changes both with
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Fig. 6. Area under the precision curves (left) and area under the
recall curves (right) when increasing the scale ratio between image
pairs in venice (top), bark (middle) and boat (bottom). While venice
shows an increasing zoom in, bark and boat shows an increasing
zoom out of the target images with respect to the reference image.

the ORB and the SIFT detector. Most of the NN–AF performance
are supported by a similar or higher MS, showing the capability of
MORB to find more correct matches than the other descriptors. We
can also observe that cORB performs worse than ORB. This perfor-
mance can be caused by the discarded keypoints that could be rele-
vant for the matching. We proved the effectiveness of our cross-scale
matching over ORB-ALL showing that the independence assump-
tion of single descriptors across scales for each feature decreases the
matching performance.

Fig. 6 shows the area under the precision curves and the area
under the recall curves in relation to the scale ratio between the
image pairs in venice, boat and bark. While all ORB variants and
MORB have similar precision performance, MORB outperforms in
recall, thus estimating more correct matches than the other descrip-
tors. As mentioned earlier, sLATCH and oLATCH perform poorly
except when the scale change is small (scale ratio close to 1) where
their performance is closer to that of ORB.

5. CONCLUSIONS

We proposed MORB, a binary descriptor that uses multiple scales
of a Gaussian pyramid to increase matching accuracy under scale
changes. We also proposed a scale-aware nearest neighbour match-
ing strategy that estimates the minimum cross-scale distance be-
tween two MORB descriptors and, as by-product, can infer the scale
ratio between pairs of local features. The matched scales tend to dif-
fer from the scales where the keypoints were localised: this leads to
an increase in the number of correct matches and to a better perfor-
mance than ORB, which considers the scale of the detection only.

While the proposed method is based on ORB [7], the overall
pipeline is modular and can be generalized to other (binary) keypoint
descriptors.
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