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Abstract—Local image features are generally robust to dif-
ferent geometric and photometric transformations on planar
surfaces or under narrow baseline views. However, the match-
ing performance decreases considerably across cameras with
unknown poses separated by a wide baseline. To address this
problem, we accumulate temporal information within each view
by tracking local binary features, which encode intensity com-
parisons of pixel pairs in an image patch. We then encode the
spatio-temporal features into fixed-length binary descriptors by
selecting temporally dominant binary values. We complement
the descriptor with a binary vector that identifies intensity
comparisons that are temporally unstable. Finally, we use this
additional vector to ignore the corresponding binary values in the
fixed-length binary descriptor when matching the features across
cameras. We analyse the performance of the proposed approach
and compare it with baselines.

Index Terms—Spatio-temporal features, ORB, Feature match-
ing

I. INTRODUCTION
Local spatio-temporal features are used for object and scene

recognition, human action recognition [1][2], video match-
ing and retrieval [3], and wide baseline reconstruction [4].
Spatio-temporal feature detectors localise interest points in
spatial, temporal, and scale domains [1][5]. Spatio-temporal
descriptors encode appearance, motion (e.g. optical flow), and
statistics (e.g. image gradients) of the spatial and temporal
neighbours of the interest points [1].

In applications such as visual Simultaneous Localisation and
Mapping (SLAM) [6][7][8][9], Structure from Motion [10] or
stereo reconstruction [4], local features are extracted indepen-
dently for each image and matched/tracked in multiple views.
Online approaches such as ORB-SLAM [6] obtain spatio-
temporal features by tracking local binary features (e.g. ORB
[11]). ORB-SLAM reduces the spatio-temporal feature to a
compact representation by selecting the descriptor with the
least median distance from all others [6].

View matching is very challenging across freely moving
cameras that observe the scene from different viewpoints.
The feature similarity normally decreases with the increase of
viewpoint, scale, and illumination changes. Moreover, features
visible in one view may be occluded in another view, thus
leading to matching ambiguities.

In this paper we investigate the problem of extracting and
matching local spatio-temporal descriptors with uncalibrated
and unsynchronised cameras under large viewpoint changes.

We propose a spatio-temporal descriptor for feature point
trajectories (tracklets) that captures the temporal changes of an
interest point. We extract a sequence of ORB [11] descriptors
and temporally pool the sequence to a compact fixed-length
binary descriptor of dominant values. We also extract a second
descriptor that discriminates temporally unstable binary tests
and acts as a selector of the pooled descriptor for feature
matching.

This paper is organised as follows. Section II reviews
spatio-temporal detectors and descriptors as well as spatio-
temporal features for 3D reconstruction. Section III describes
the proposed spatio-temporal descriptor, its reduction, and the
cross-view matching. Section IV discusses the experimental
results. Finally, in Section V we draw conclusions.

II. BACKGROUND

In this section we briefly overview spatio-temporal detectors
and descriptors, and we focus in particular on binary features
for real-time applications.

Spatio-temporal detectors include Harris3D [5], Cuboid
[12], Hessian [13], and dense sampling [1]. These detectors
find space-time interest points given by local maxima of
a response function, such as the Harris response [14] for
Harris3D, the Gabor filters-based response for Cuboid, and the
Hessian saliency measures for Hessian. Harris3D and Hessian
are an extension of the space-time domain of the Harris [14]
and SURF [15] detectors. All these detectors also consider
the scale for both spatial and temporal domains to detect
the interest points. Dense sampling does not search for local
maxima of a response function and defines the location of the
interest points in a regular 5-dimensional grid, which accounts
for space, time, spatial scale and temporal scale, with a 50%
overlap between volumes.

Spatio-temporal descriptors are 3D patches surrounding an
interest point and divide the volume into smaller volumetric
cells. Examples include Cuboid [12], HOG/HOF [16], HOG3D
[17], Extended SURF (eSURF) [13], and 3D-SIFT [18].
Cuboid computes the gradient for each pixel followed by
Principal Component Analysis to reduce the dimension of the
feature vector. HOG/HOF computes normalised histograms of
spatial gradient and normalised histograms of optical flow with
a fixed number of bins and concatenates them to form a single



feature vector. 3D-SIFT and HOG3D extend to the spatio-
temporal domain the quantisation of the histogram of gradients
used in SIFT [19]. 3D-SIFT represents the gradients in polar
coordinates and quantises them in histograms by meridians and
parallels. This solution leads to singularity problems near the
poles [17]. HOG3D overcomes this issue by using polyhedrons
and projections of the gradient vectors onto the axes that
connect the centre of the polyhedron to the centre of each face
of the polyhedron. eSURF extends the SURF [15] descriptor
by representing each cell of the 3D patch with a weighted
sum of uniformly sampled responses of Haar wavelets. All
these approaches use a fixed volume to extract the descriptor
for a given video, thus making the matching across different
viewpoints a difficult problem.

Daisy-3D [4] is a spatio-temporal description for dense
3D reconstruction with a wide baseline stereo camera in
the presence of non-rigid objects and occlusions. Daisy-3D
captures the temporal evolution of the spatial structure of an
interest point by tracking dense 2D Daisy features [20] with
optical flow priors, and concatenates the temporal descriptors.
Spatio-temporal features are then matched between cameras
by computing an average distance of sub-descriptors within a
small window, followed by a global optimisation to enforce
spatio-temporal consistency for depth estimation. The dimen-
sion of the temporal descriptors is large and therefore the
Daisy-3D matching is computationally expensive. Moreover,
to deal with dynamic objects in the scene, the Daisy-3D
matching assumes synchronised cameras.

To obtain spatio-temporal features, most online approaches
for self-localisation and 3D reconstruction rely on the ex-
traction and tracking of local image features, such as Scale
Invariant Feature Transform (SIFT) [19], Speeded Up Robust
Features (SURF) [15], or Binary Robust Invariant Elementary
Features (BRIEF) [21].

Binary features are preferred for real-time applications
because of their extraction and matching efficiency. Examples
of binary features include Oriented FAST and Rotated BRIEF
(ORB) [11], Binary Robust Invariant Scale Key-point (BRISK)
[22], or Fast REtinA Keypoint (FREAK) [23]. Binary features
describe a small patch around an interest point with compar-
isons of intensity values of pixel pairs of a sampling pattern.
The sampling pattern is obtained either in a deterministic way
[22], in a probabilistic way [21], or through learning [11][23].
ORB features are more compact, faster to extract and can
achieve a good accuracy in image feature matching bench-
marks compared to the more complex SIFT features [24][6].
For this reason, ORB features are used in several pipelines,
such as ORB-SLAM [6] and the Multi-UAV Collaborative
SLAM [9]. Nevertheless, their performance decreases under
severe geometric changes, such as scale and viewpoint, which
typically occur when multiple cameras move freely.

III. SPATIO-TEMPORAL DESCRIPTOR AND MATCHING

A. Localisation and descriptor extraction

Let Ik be a (gray-scale) frame at time k captured by an
uncalibrated and moving camera with unknown poses. We

apply the FAST corner detector [25] in each Ik and retain
the F features with the highest Harris response [14], which
are at feature locations {x1,k, . . . ,xf,k, . . . ,xF,k}.

After smoothing Ik with a 2D Gaussian filter of size W = 7
and standard deviation σ = 2, we extract a descriptor dp for
each feature location using the ORB [11] sampling pattern on
a G × G patch p = ρ(Ik,xf,k, G) centred at each feature
location xf,k:

dp = [τp(u1,v1), . . . , τp(uq,vq), . . . , τp(u256,v256)], (1)

where uq and vq are the positions of each pixel pair defined
by the sampling pattern S, with q = 1, ..., 256. The sampling
pattern S consists of learnt pixel pairs with high variance and
low correlation in their binary derivative [11].

The function τp(·, ·) is a binary test on the intensity values
p(uq) and p(vq) in patch p of each pixel pair uq and vq of
the sampling pattern:

τp(uq,vq) =

{
1 if p(uq) < p(vq),

0 otherwise.
(2)

To account for in-plane rotations, we compute the orien-
tation angle θp of the patch with respect to its centre of
mass as defined by the intensity centroid method [26]. After
applying the rotation R(θp) ∈ SO(2) to the sampling pattern
S: Sp = R(θp)S, the descriptor is (x, θ,d)f,k, which encodes
the location, x, orientation, θ, and ORB descriptor d of the
local image feature at frame k.

B. Descriptor tracking and reduction

We track the features between frame Ik and Ik−1 by
matching their descriptors with a nearest neighbour approach
followed by a validation strategy to allow only one-to-one
matches. For each feature from frame k we select the three
closest features in frame k − 1 by using as dissimilarity
measure the Hamming distance: df,k⊕dg,k−1, where ⊕ is the
bit-wise XOR operator. After ranking all candidate matches
according to their Hamming distance, we discard matches
whose feature in Ik are outside a gate of radius r = 10 pixels
(as in the KLT tracker [27]) of the feature in Ik−1. We also
discard matches with a feature with higher similarity in another
match.

The resulting spatio-temporal feature is Ti =

{(x, θ,d)i,k}
kil

k=ki1
, where ki1 and kil are the first and

last frames where the feature is detected (see Fig. 1). The
sequence of image locations {xki1

, . . . ,xkil
} denotes the

trajectory (or tracklet) of the spatio-temporal feature, with
length Li = kil − ki1 . The spatio-temporal descriptor,
di ∈ {0, 1}Li×256 is the temporal concatenation of the ORB
descriptors: di = [di,ki1

, . . . ,di,kil
].

We reduce di to a fixed-length descriptor zi ∈ {0, 1}256
with zi = [z1,i, . . . , zq,i, . . . , z256,i] by accumulating the
binary test values over time (pooling) and applying a threshold
to determine the final binary test value (voting),

zq,i =

{
1 if 1

Li
〈dq,i,1〉 > 0.5,

0 otherwise,
(3)



138◦ 147◦ 155◦ 163◦ 174◦ 168◦ 183◦

127◦ 130◦ 127◦ 137◦ 140◦ 145◦ 156◦ 166◦ 174◦ 169◦ 173◦ 183◦

Fig. 1. On top, sample patch orientation changes from frame 7 to frame 20 (from left to right) for the tracked ORB descriptor in one camera (first row) and
the corresponding tracked ORB descriptor in an another camera (second row). For each patch we show its orientation in degrees and 3 sample rods (red, cyan,
yellow) from the ORB sampling pattern. At the bottom, the corresponding temporal ORB descriptors (differently from the patches, time is in a top-down
representation), where we can see that some binary tests remain mostly stable on the vertical signals (black is a 0 and white is a 1).

where dq,i ∈ {0, 1}Li is the vector containing the temporal
values of the binary test q, 〈·, ·〉 is the (logical) dot product
and 0.5 is the prior probability of the binary test being 1.

To account for noise in the temporal matching caused e.g. by
photometric changes or image blur, we allow some variations
in the binary test outcome, at a rate lower than 20% of the
length of the spatio-temporal feature. We therefore compute
a second descriptor, d′i ∈ {0, 1}

(Li−1)×256, that captures the
temporal changes of the binary tests in di and contains the bit-
wise XOR of two consecutive ORB descriptors. We reduce d′i
to mi ∈ {0, 1}256 with mi = [m1,i, . . . ,mq,i, . . . ,m256,i] that
contains the stability information of zi:

mq,i =

{
1 if 1

Li−1 〈d
′
q,i,1〉 ≤ 0.2,

0 otherwise.
(4)

C. Cross-view matching

Let i be the index of a spatio-temporal feature in one view
(zi) and j the index of a spatio-temporal feature in another
view (zj). To improve the feature matching across views,
we remove temporally unstable binary tests of zi and zj by
applying in turn the additional descriptors mi and mj to
the XOR operation between zi and zj through the weighted
Hamming distance [28].

Let Mi = 〈mi,1〉 be the number of stable binary tests
for zi and Mj for zj . Let 〈mi, zi ⊕ zj〉 be the masked
Hamming distance using only mi. We compute the final
dissimilarity measure between two descriptors as a weighted
linear combination of two masked Hamming distances:

h(i, j) =
Mi〈mi, zi ⊕ zj〉+Mj〈mj , zi ⊕ zj〉

Mi +Mj
. (5)

The set of putative matches is therefore determined by a
similarity matching strategy such as threshold-based or nearest
neighbour [29]. The ratio test between the distance of the
first and second nearest neighbours can also be computed to
remove possible ambiguities [19].

IV. EXPERIMENTS

A. Experimental setup

We compare ST-ORB, P-ST-ORB, Mask-P-ST-ORB, and
LMED. ST-ORB corresponds to the high-dimensional, tempo-
rally concatenated ORB descriptor, di. P-ST-ORB corresponds
to the reduced binary descriptor zi, while Mask-P-ST-ORB
complements P-ST-ORB with mi. LMED is proposed within
ORB-SLAM [6] and selects the single ORB descriptor within
ST-ORB with the least median Hamming distance with respect
to all the other single ORB descriptors. Even if LMED was
proposed for tracking ORB features with a single camera, we
analyse here its performance for cross-view matching.

To extract ORB descriptors [11] we use their OpenCV 3.3
implementation with default parameters: the FAST threshold
is 20, the number of features is F = 500, and the patch size
is G = 31. Moreover, we set the number of scales to 1.

We use the most suitable dissimilarity measure for each
descriptor when matching features. For ST-ORB, we compute
the Hamming distance of each pair of single ORB descriptors
between di and dj . Then we use the minimum among all
Hamming distances as dissimilarity measure between the two
ST-ORB descriptors. For P-ST-ORB and LMED, we use the
Hamming distance. For Mask-P-ST-ORB, we use the weighted
Hamming distance (see Eq. (5)).



B. Dataset

We use images from three datasets: coslam courtyard,
freiburg office and freiburg desk. Fig. 2 shows five frames
for each camera and for each dataset.

The data of coslam courtyard1 [30] are four videos
recorded with a hand-held camera in a university courtyard.
Starting from a similar position in front of a panel, each video
was acquired by moving the camera around the area with
different paths and returning to the initial position at the end of
the recording. From the first and fourth sequences, we select
the first 50 frames after sub-sampling the videos from 50 to 5
fps. As there is no camera calibration data provided with the
dataset, we evaluate the methods only qualitatively.

For quantitative evaluation with ground-truth data, we use
the TUM-RGB-D SLAM dataset [31] that contains monocular
sequences acquired indoors with a Kinect. The Kinect was
either handheld or mounted on a robot. Ground-truth camera
poses were acquired with a motion capture system. From
the dataset, we select two sequences with enough texture for
detecting and tracking features, and with loop closures or
different movements of the camera around the same scene:
freiburg office and freiburg desk. For each sequence, we then
select two portions of 50 frames with non-overlapping frames
to simulate the motion of two cameras looking at the same por-
tion of the scene from different viewpoints. For freiburg office,
we select the frames from 114 to 163 and from 2305 to 2354.
The scenario consists of two cameras moving slowly around
a cluttered desk and without strong viewpoint changes. For
freiburg desk, we select the frames from 97 to 147 and from
390 to 340. The scenario consists of two cameras moving in
opposite directions around an office desk with more severe
changes in scale and viewpoint. Note that some images in the
datasets are affected by blur.

C. Performance evaluation

Inspired by [29], we evaluate the spatio-temporal feature
matching by exploiting the depth images and ground-truth
poses provided with the TUM-RGB-D SLAM dataset.

Given two or more sequences acquired with an RGB-D
camera, we relate each RGB pixel to its corresponding depth
pixel. Using projective geometry [32], we reconstruct the 3D
structure of the scene in a common reference system, as the
ground-truth poses are provided by a motion capture system.
We can then determine spatio-temporal features for each video
stream as well as ground-truth correspondences2.

For each spatio-temporal feature Ti, we compute a 3D loca-
tion Xi as the median of the set of 3D points estimated from
the back-projection of the image locations

{
xi,ki1

, . . . ,xi,kil

}
and properly scale them using the associated values in the
depth images. The median helps to remove false 3D esti-
mations caused by noise or errors in the tracking of the

1drone.sjtu.edu.cn/dpzou/project/coslam.php, accessed: March 2018
2Given different sampling rates for RGB and depth, we consider the same

depth image for two RGB images that are temporarily the closest to the depth
image.

coslam courtyard

freiburg office

freiburg desk

Fig. 2. Frames 0, 10, 20, 30, and 40 (from left to right) of the two
camera sequences for the coslam courtyard (top), freiburg office (middle)
and freiburg desk (bottom) datasets.

spatio-temporal features. After obtaining a set of reconstructed
3D points for each video stream, we apply a brute force
approach between the two sets and we then define the ground-
truth correspondences as the set of all 3D point pairs whose
Euclidean distance is lower than 3 cm.

Given the set of matches with a sufficiently high similarity
(putative matches), we define a correct match as the tracklet
pair that is also a ground-truth correspondence. Using the
ground-truth correspondences, putative matches and correct
matches, we compute precision, recall, F-score, and matching
score (as in [29]). Precision is the ratio between the number of
correct matches and the total number of matches. Recall is the
ratio between the number of correct matches and the number of
ground-truth correspondences. F-score= 2 Precision×Recall

Precision+Recall is the
harmonic mean between precision and recall. The matching
score is the ratio between the number of correct matches and
the minimum between the number of tracklets in one view and
the other view.

D. Results on the outdoor dataset

For the coslam courtyard dataset, we consider the nearest
neighbour with ratio test as similarity matching strategy. For
each spatio-temporal descriptor in the second camera, we
search for the two nearest descriptors in the first camera, and
we select the match only if the distance ratio of two nearest
neighbours is below a threshold (we use the value 0.8 as
in [24]). As there are fewer than 100 matches, we manually
annotate true and false positives and we report the results in
Tab. I. The number of spatio-temporal features estimated is
200 for the first camera and 343 for the second camera. The



Fig. 3. Example of true matches and false matches with the Mask-P-ST-ORB
and with Hamming distance lower than 50. Notice the different length of the
temporal patches. First match (true positive): first tracklet from frame 15 to 21
and second tracklet from frame 8 to frame 19. Second match (true positive):
first tracklet from frame 37 to 47 and second tracklet from frame 41 to frame
45. Third match (false positive): first tracklet from frame 43 to 47 and second
tracklet from frame 46 to frame 50, Hamming distance equal to 38. Fourth
match (false positive): first tracklet from frame 10 to 15 and second tracklet
from frame 22 to frame 26, Hamming distance equal to 46.

number of matches estimated by each method is similar to each
other, but LMED finds much fewer true positives than the other
approaches. We can see that Mask-P-ST-ORB can achieve
and slightly outperform the performance of the exhaustive ST-
ORB. Fig. 3 shows few examples of true and false matches
with a Hamming distance lower than 50 using Mask-P-ST-
ORB. Even if true positives are well matched, we can still see
the limitations of the spatio-temporal descriptor that hardily
discriminates the pavement from the leaves only based on the
intensities (fourth example at the bottom of Fig. 3).

E. Results with synthetic tracklets

For the freiburg office and freiburg desk datasets, we ana-
lyse a set of ‘synthetic’ tracklets for each video stream to
reduce possible errors in the extraction of the spatio-temporal
features and focus the evaluation mainly on the cross-view
matching. The ‘synthetic’ tracklets are generated as follows.

For each camera and for each frame, we detect FAST [25]
corner points and we back-project each point xf,k to its
corresponding 3D point Xf,k ∈ R3 using the associated depth
value sf,k, the camera pose Ck ∈ SE(3) for frame k, and the
camera calibration matrix K,

Xf,k = π−1(xf,k,Ck,K, sf,k), (6)

where π(·) : R3 → R2 is the projective transformation of a
pinhole camera model [32]. The camera calibration matrix K
contains the intrinsic parameters, such as the focal length and
the principal point.

As the back-projection of the feature locations is inde-
pendent for each frame, there will be duplicated 3D points.
Starting from the first 3D point, we therefore remove all those

TABLE I
MATCHING RESULTS ON THE coslam courtyard DATASET USING THE

NEAREST NEIGHBOUR WITH RATIO TEST MATCHING STRATEGY.
GROUND-TRUTH IS NOT AVAILABLE AND WE MANUALLY ANNOTATE TRUE

AND FALSE POSITIVES. TP: TRUE POSITIVES.

Method # Matches # TP Precision
ST-ORB 67 37 .55
LMED 51 17 .33
P-ST-ORB 64 36 .56
Mask-P-ST-ORB 56 32 .57

successive 3D points whose distance is lower than 2 cm from
the candidate point until we obtain a set of unique 3D points.

To generate the tracklets, we then project each 3D point in
each frame of each camera. If the image point is within the
image bounds, we validate which of the four neighbour pixels
after approximation of the image point coordinates is closer
to the 3D point by back-projecting each pixel again in 3D:

‖π−1 (π(Xf ,Ck,K), sf,k)−Xf‖ < 0.02. (7)

If none of the four pixels passes the validation test, the
visibility of the 3D point in frame k is set to 0. This means
that either that 3D point is occluded or the estimated depth
value was inaccurate. Moreover, we allow only image points
that have a positive Harris response [14] to avoid flat areas or
points along an edge. As last step, we accept valid tracklets
only if the number of visible image points is greater than four
in at least either of the two video streams. This procedure
attempts to make the synthetic tracklets as close as possible
to the real tracklets, removing possible tracking errors and/or
splitting single tracklets in multiple instances.

We evaluate the methods with the generated ‘synthetic’
tracklets on the freiburg desk. Fig. 4 shows the distributions
of the Hamming distance for true and false positives for
each method3. The methods under analysis do not easily
discriminate true and false positives as viewpoint and scale
changes are especially challenging in this scenario. Moreover,
there are several repetitive patterns (e.g. on the keyboard)
that create ambiguities in finding correct correspondences.
Nevertheless, there are also true positives whose appearance
are not so similar, making the match hard to estimate.

Tab. II and Fig. 5 show the results of the methods by
varying the threshold on the Hamming distance from 0 to
128 and also by varying the number of matches from 0 to
5000. We can see that ST-ORB achieves the best performance
because of the exhaustive matching strategy that can find
the single ORB descriptors with the most similar appearance.
Mask-P-ST-ORB outperforms P-ST-ORB and LMED in terms
of recall, however it has a high number of false positives,
showing that the proposed descriptor is not discriminative
enough. Nevertheless, also ST-ORB and P-ST-ORB become
less accurate when increasing the threshold of the Hamming
distance.

3A similar behaviour was presented in BRIEF [21] on a planar scene with
increasing viewpoint change.



TABLE II
NUMBER OF TRUE POSITIVES (TP), NUMBER OF FALSE POSITIVES (FP),
PRECISION (P), RECALL (R), F-SCORE (F) AND MATCHING SCORE (MS)

FOR freiburg desk AT DIFFERENT HAMMING DISTANCE (HD)
THRESHOLDS. THE NUMBER OF TRACKLETS IS 2516 IN CAMERA a AND

3308 IN CAMERA b. THE NUMBER OF GROUND-TRUTH
CORRESPONDENCES IS 2447. TRACKLETS ARE GENERATED FROM 3D

POINTS USING THE DEPTH IMAGES. WHEN THE NUMBER OF FALSE
POSITIVES IS TOO HIGH, WE HIGHLIGHT THE VALUE IN RED.

HD Method # TP # FP P R F MS

20

ST-ORB 128 564 .18 .05 .08 .05
LMED 3 9 .25 .00 .00 .00
P-ST-ORB 3 15 .17 .00 .00 .00
Mask-P-ST-ORB 44 8071 .01 .02 .01 .02

30

ST-ORB 515 4107 .11 .21 .15 .20
LMED 19 87 .18 .01 .01 .01
P-ST-ORB 19 151 .11 .01 .01 .01
Mask-P-ST-ORB 147 33669 .00 .06 .01 .06

40

ST-ORB 1034 29684 .03 .42 .06 .41
LMED 51 540 .09 .02 .03 .02
P-ST-ORB 66 1134 .06 .03 .04 .03
Mask-P-ST-ORB 314 102177 .00 .13 .01 .12

50

ST-ORB 1484 176029 .01 .61 .02 .59
LMED 120 3644 .03 .05 .04 .05
P-ST-ORB 158 7102 .02 .06 .03 .06
Mask-P-ST-ORB 630 267332 .00 .26 .00 .25

60

ST-ORB 1841 717154 .00 .75 .01 .73
LMED 212 18728 .01 .09 .02 .08
P-ST-ORB 309 32584 .01 .13 .02 .12
Mask-P-ST-ORB 974 616485 .00 .40 .00 .39
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Fig. 4. Distribution of the Hamming distances for corresponding features (true
positives, TP) and non-corresponding features (false positives, FP) for ST-
ORB, LMED, P-ST-ORB, and Mask-P-ST-ORB with ‘synthethic’ tracklets.

Because each method can obtain the best performance at
different thresholds of the Hamming distances and to make
the comparison fair, we compare the methods by varying the
number of matches from 0 to 5000. We can observe that Mask-
P-ST-ORB has very low performance in the first 5000 matches,
while the other methods confirm the previous results.

F. Results with real tracklets

We compare all the methods on both freiburg office and
freiburg desk datasets using the spatio-temporal features ob-
tained with the tracking approach discussed in Sec. IV-F.
Fig. 6, top shows the distributions of the Hamming distance for
corresponding (true positives) and non-corresponding (false
positives) features. As freiburg office has a limited change
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Fig. 5. Performance results with ‘synthetic’ tracklets on the freiburg desk
dataset. (a) Precision, recall, recall vs 1-precision, and F-score curves with
the threshold on the Hamming distance varying from 20 to 80. (b) Precision,
recall and F-score curves with the number of matches varying from 0 to
5000. The relation between Hamming distance and the number matches is
also shown.

in viewpoint and the camera motion is quite slow, the dis-
tributions are slightly better separated, while they cannot be
distinguished in the freiburg desk dataset. Fig. 6 also shows
the performance results by varying the Hamming distance
(Fig. 6, middle) and by varying the number of matches (Fig. 6,
bottom). ST-ORB is the best in both datasets, while P-ST-
ORB and Mask-P-ST-ORB outperform LMED. However, the
performance of Mask-P-ST-ORB is similar to P-ST-ORB,
showing that masking the temporally unstable binary tests
is unnecessary in this case. Therefore, the first reduction is
sufficient to compact the high-dimensional ST-ORB descriptor.

V. CONCLUSION

We investigated the problem of matching spatio-temporal
features extracted from videos acquired by independently mov-
ing cameras. We proposed a spatio-temporal binary descriptor
obtained by tracking ORB [11] features and concatenating
their descriptors. As matching the high-dimensional descrip-
tors is computationally expensive, we accumulated the spatio-
temporal features into a fixed-length binary descriptors by
pooling and selecting the temporally dominant values. We
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Fig. 6. Performance results with real tracklets on the freiburg office (left columns) and freiburg desk (right columns) datasets. On top (first two rows),
distribution of the Hamming distances for corresponding features (true positives, TP) and non-corresponding features (false positives, FP) for ST-ORB,
LMED, P-ST-ORB, and Mask-P-ST-ORB. In the middle (third and fourth rows), precision, recall, recall vs 1-precision, and F-score curves with the threshold
on the Hamming distance varying from 20 to 80. At the bottom (fifth and sixth rows), precision, recall and F-score curves with the number of matches varying
from 0 to 5000. The relation between Hamming distance and the number matches is also shown.

also complemented this descriptor with an additional binary
descriptor by encoding the temporal stability of each binary
test and ignoring those binary values in the first descriptor
when matching features across cameras. Experiments showed
that our descriptor outperforms LMED, the method proposed
in ORB-SLAM [6]. As future work, we will investigate an
effective reduction approach that considers the viewpoint and
preserves the matching efficiency.
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